For languages with keywords, some special trickery needs to happen to prevent for example "if" from being interpreted as an identifier and "ifSomeVariableName" from becoming keyword "if" followed by identifier "SomeVariableName" in the token stream.
For recursive descent and Lex/Yacc, I've simply taken the approach (as per helpful instruction) of transforming the token stream between the lexer and the parser.
However, FParsec doesn't really seem do a separate lexer step, so I'm wondering what the best way to deal with this is. Speaking of, it seems like Haskell's Parsec supports a lexer layer, but FParsec does not?
I think, this problem is very simple. The answer is that you have to:
[a-z]+
), lower case only;keyword
; otherwise, the parser will fall back;identifier
separately;E.g. (just a hypothetical code, not tested):
let keyWordSet =
System.Collections.Generic.HashSet<_>(
[|"while"; "begin"; "end"; "do"; "if"; "then"; "else"; "print"|]
)
let pKeyword =
(many1Satisfy isLower .>> nonAlphaNumeric) // [a-z]+
>>= (fun s -> if keyWordSet.Contains(s) then (preturn x) else fail "not a keyword")
let pContent =
pLineComment <|> pOperator <|> pNumeral <|> pKeyword <|> pIdentifier
The code above will parse a keyword or an identifier twice. To fix it, alternatively, you may:
[a-z][A-Z]+[a-z][A-Z][0-9]+
), e.g. everything alphanumeric;P.S. Don't forget to order "cheaper" parsers first, if it does not ruin the logic.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With