I have a data.table with multiple columns of a variable "Performance" in specific years and a column named "ExPerf". I want to create a new column called FLAG which would indicate rows flagged for manual review based on these two conditions:
A mock data.table similar to the one I have:
library(data.table)
dt <- data.table(Id = c("N23", "N34", "N11", "N65", "N55", "N78", "N88"),
Name = c("ABCD", "ACBD", "ACCD", "ADBN", "ADDD", "DBCA", "CBDA"),
Type = c("T", "B", "B", "T", "T", "B", "B"),
Sold = c(500, 300, 350, 500, 350, 400, 450),
Bl = c(2000, 2100, 2000, 1500, 1890, 1900, 2000),
P_2016 = c(-200, 420, 800, 900, -10, 75, 400),
P_2017 = c(500, 300, -20, 700, 50, 80, 370),
P_2018 = c(1000, 400, 600, 800, 40, 500, 300),
EP_2019 = c(1500, 380, 500, 850, 30, 400, 350))
dt
Id Name Type Sold Baseline Perf_2016 Perf_2017 Perf_2018 ExpPerf_2019
N23 ABCD T 500 2000 -200 500 1000 1500
N34 ACBD B 300 2100 420 300 400 380
N11 ACCD B 350 2000 800 -20 600 500
N65 ADBN T 500 1500 900 700 800 850
N55 ADDD T 350 1890 -10 50 40 30
N78 DBCA B 400 1900 75 80 500 400
N88 CBDA B 450 2000 400 370 300 350
For this data.table the desired output would add the FLAG column as seen below:
Id Name Type Sold Baseline Perf_2016 Perf_2017 Perf_2018 ExpPerf_2019 FLAG
1: N23 ABCD T 500 2000 -200 500 1000 1500 TRUE
2: N34 ACBD B 300 2100 420 300 400 380 FALSE
3: N11 ACCD B 350 2000 800 -20 600 500 TRUE
4: N65 ADBN T 500 1500 900 700 800 850 FALSE
5: N55 ADDD T 350 1890 -10 50 40 30 TRUE
6: N78 DBCA B 400 1900 75 80 500 400 TRUE
7: N88 CBDA B 450 2000 400 370 300 350 FALSE
- Any of the performance columns has a negative value
- The expected performance column is different from any of the performance columns by more than 50%.
In other words, there are common min and max bounds for these columns:
So...
dt[, v := !Reduce(`&`,
lapply(.SD, between, pmax(0, ExpPerf_2019*0.5), ExpPerf_2019*1.5)
), .SDcols=grep("^Perf_", names(dt), value=TRUE)]
Id Name Type Sold Baseline Perf_2016 Perf_2017 Perf_2018 ExpPerf_2019 v
1: N23 ABCD T 500 2000 -200 500 1000 1500 TRUE
2: N34 ACBD B 300 2100 420 300 400 380 FALSE
3: N11 ACCD B 350 2000 800 -20 600 500 TRUE
4: N65 ADBN T 500 1500 900 700 800 850 FALSE
5: N55 ADDD T 350 1890 -10 50 40 30 TRUE
6: N78 DBCA B 400 1900 75 80 500 400 TRUE
7: N88 CBDA B 450 2000 400 370 300 350 FALSE
How it works:
between
checks if a column lies between the min and maxlapply
applies the check to each column, returning a listReduce
with &
checks whether all columns meet the condition!
negates the result, so we identify cases where at least one column fails the conditionbetween
, &
and !
are vectorized operators, so we end up with a vector of results, one for each row. I would probably write this sequence in magrittr so the steps are simpler to follow:
library(magrittr)
dt[, v := .SD %>%
lapply(between, pmax(0, ExpPerf_2019*0.5), ExpPerf_2019*1.5) %>%
Reduce(f=`&`) %>%
not
, .SDcols=grep("^Perf_", names(dt), value=TRUE)]
not
is a relabeling of !
, offered by magrittr for convenience.
.SD
is a special symbol for the subset of data operated on inside the j
part of DT[i, j, by]
. In this case, there is no i
or by
, so only .SDcols
is subsetting (to select the columns of interest).
Comment
You can use the following code to check for your two conditions:
dt[, FLAG := any(.SD < 0 | .SD < ExpPerf_2019 - .5*ExpPerf_2019 | .SD > ExpPerf_2019 + .5*ExpPerf_2019),
by = Id,
.SDcols = grep("^Perf", colnames(dt), value = TRUE)
]
The result:
> dt
Id Name Type Sold Baseline Perf_2016 Perf_2017 Perf_2018 ExpPerf_2019 FLAG
1: N23 ABCD T 500 2000 -200 500 1000 1500 TRUE
2: N34 ACBD B 300 2100 420 300 400 380 FALSE
3: N11 ACCD B 350 2000 800 -20 600 500 TRUE
4: N65 ADBN T 500 1500 900 700 800 850 FALSE
5: N55 ADDD T 350 1890 -10 50 40 30 TRUE
6: N78 DBCA B 400 1900 75 80 500 400 TRUE
7: N88 CBDA B 450 2000 400 370 300 350 FALSE
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With