Upd:
Replace asyncio.ensure_future
with asyncio.create_task
everywhere if you're using Python >= 3.7 It's a newer, nicer way to spawn tasks.
According to python docs for asyncio.Task
it is possible to start some coroutine to execute "in the background". The task created by asyncio.ensure_future
won't block the execution (therefore the function will return immediately!). This looks like a way to "fire and forget" as you requested.
import asyncio
async def async_foo():
print("async_foo started")
await asyncio.sleep(1)
print("async_foo done")
async def main():
asyncio.ensure_future(async_foo()) # fire and forget async_foo()
# btw, you can also create tasks inside non-async funcs
print('Do some actions 1')
await asyncio.sleep(1)
print('Do some actions 2')
await asyncio.sleep(1)
print('Do some actions 3')
if __name__ == '__main__':
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
Output:
Do some actions 1
async_foo started
Do some actions 2
async_foo done
Do some actions 3
Note that asyncio expects tasks to be completed at the moment the event loop completes. So if you'll change main()
to:
async def main():
asyncio.ensure_future(async_foo()) # fire and forget
print('Do some actions 1')
await asyncio.sleep(0.1)
print('Do some actions 2')
You'll get this warning after the program finished:
Task was destroyed but it is pending!
task: <Task pending coro=<async_foo() running at [...]
To prevent that you can just await all pending tasks after the event loop has completed:
async def main():
asyncio.ensure_future(async_foo()) # fire and forget
print('Do some actions 1')
await asyncio.sleep(0.1)
print('Do some actions 2')
if __name__ == '__main__':
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
# Let's also finish all running tasks:
pending = asyncio.Task.all_tasks()
loop.run_until_complete(asyncio.gather(*pending))
Sometimes you don't want to await tasks to be done (for example, some tasks may be created to run forever). In that case, you can just cancel()
them instead of awaiting them:
import asyncio
from contextlib import suppress
async def echo_forever():
while True:
print("echo")
await asyncio.sleep(1)
async def main():
asyncio.ensure_future(echo_forever()) # fire and forget
print('Do some actions 1')
await asyncio.sleep(1)
print('Do some actions 2')
await asyncio.sleep(1)
print('Do some actions 3')
if __name__ == '__main__':
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
# Let's also cancel all running tasks:
pending = asyncio.Task.all_tasks()
for task in pending:
task.cancel()
# Now we should await task to execute it's cancellation.
# Cancelled task raises asyncio.CancelledError that we can suppress:
with suppress(asyncio.CancelledError):
loop.run_until_complete(task)
Output:
Do some actions 1
echo
Do some actions 2
echo
Do some actions 3
echo
Output:
>>> Hello
>>> foo() started
>>> I didn't wait for foo()
>>> foo() completed
Here is the simple decorator function which pushes the execution to background and line of control moves to next line of the code.
The primary advantage is, you don't have to declare the function as await
import asyncio
import time
def fire_and_forget(f):
def wrapped(*args, **kwargs):
return asyncio.get_event_loop().run_in_executor(None, f, *args, *kwargs)
return wrapped
@fire_and_forget
def foo():
print("foo() started")
time.sleep(1)
print("foo() completed")
print("Hello")
foo()
print("I didn't wait for foo()")
Note: Check my other answer which does the same using plain thread
without asyncio
.
This is not entirely asynchronous execution, but maybe run_in_executor() is suitable for you.
def fire_and_forget(task, *args, **kwargs):
loop = asyncio.get_event_loop()
if callable(task):
return loop.run_in_executor(None, task, *args, **kwargs)
else:
raise TypeError('Task must be a callable')
def foo():
#asynchronous stuff here
fire_and_forget(foo)
For some reason if you are unable to use asyncio
then here is the implementation using plain threads. Check my other answers and Sergey's answer too.
import threading, time
def fire_and_forget(f):
def wrapped():
threading.Thread(target=f).start()
return wrapped
@fire_and_forget
def foo():
print("foo() started")
time.sleep(1)
print("foo() completed")
print("Hello")
foo()
print("I didn't wait for foo()")
produces
>>> Hello
>>> foo() started
>>> I didn't wait for foo()
>>> foo() completed
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With