I'm trying to work out an algorithm for finding a path across a directed graph. It's not a conventional path and I can't find any references to anything like this being done already.
I want to find the path which has the maximum minimum weight.
I.e. If there are two paths with weights 10->1->10 and 2->2->2 then the second path is considered better than the first because the minimum weight (2) is greater than the minimum weight of the first (1).
If anyone can work out a way to do this, or just point me in the direction of some reference material it would be incredibly useful :)
EDIT:: It seems I forgot to mention that I'm trying to get from a specific vertex to another specific vertex. Quite important point there :/
EDIT2:: As someone below pointed out, I should highlight that edge weights are non negative.
The total weight of a path is the sum of the weights of its edges.
The path with this property is called the maximin path or bottleneck path, and can be found with a straightforward set of modifications to mot shortest-path algorithms. The minimax path represents the opposite idea - the path between two points that minimizes the maximum edge capacity. Hope this helps!
Yes, with a slight modification to the algorithm. Yes, by multiplying each edge in the graph by -1, and finding the shortest-path.
I am copying this answer and adding also adding my proof of correctness for the algorithm:
I would use some variant of Dijkstra's. I took the pseudo code below directly from Wikipedia and only changed 5 small things:
dist
to width
(from line 3 on)width
to -infinity
(line 3)infinity
(line 8)-infinity
(line 14)1 function Dijkstra(Graph, source):
2 for each vertex v in Graph: // Initializations
3 width[v] := -infinity ; // Unknown width function from
4 // source to v
5 previous[v] := undefined ; // Previous node in optimal path
6 end for // from source
7
8 width[source] := infinity ; // Width from source to source
9 Q := the set of all nodes in Graph ; // All nodes in the graph are
10 // unoptimized – thus are in Q
11 while Q is not empty: // The main loop
12 u := vertex in Q with largest width in width[] ; // Source node in first case
13 remove u from Q ;
14 if width[u] = -infinity:
15 break ; // all remaining vertices are
16 end if // inaccessible from source
17
18 for each neighbor v of u: // where v has not yet been
19 // removed from Q.
20 alt := max(width[v], min(width[u], width_between(u, v))) ;
21 if alt > width[v]: // Relax (u,v,a)
22 width[v] := alt ;
23 previous[v] := u ;
24 decrease-key v in Q; // Reorder v in the Queue
25 end if
26 end for
27 end while
28 return width;
29 endfunction
Some (handwaving) explanation why this works: you start with the source. From there, you have infinite capacity to itself. Now you check all neighbors of the source. Assume the edges don't all have the same capacity (in your example, say (s, a) = 300
). Then, there is no better way to reach b
then via (s, b)
, so you know the best case capacity of b
. You continue going to the best neighbors of the known set of vertices, until you reach all vertices.
Proof of correctness of algorithm:
At any point in the algorithm, there will be 2 sets of vertices A and B. The vertices in A will be the vertices to which the correct maximum minimum capacity path has been found. And set B has vertices to which we haven't found the answer.
Inductive Hypothesis: At any step, all vertices in set A have the correct values of maximum minimum capacity path to them. ie., all previous iterations are correct.
Correctness of base case: When the set A has the vertex S only. Then the value to S is infinity, which is correct.
In current iteration, we set
val[W] = max(val[W], min(val[V], width_between(V-W)))
Inductive step: Suppose, W is the vertex in set B with the largest val[W]. And W is dequeued from the queue and W has been set the answer val[W].
Now, we need to show that every other S-W path has a width <= val[W]. This will be always true because all other ways of reaching W will go through some other vertex (call it X) in the set B.
And for all other vertices X in set B, val[X] <= val[W]
Thus any other path to W will be constrained by val[X], which is never greater than val[W].
Thus the current estimate of val[W] is optimum and hence algorithm computes the correct values for all the vertices.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With