A distribution is beta-binomial if p, the probability of success, in a binomial distribution has a beta distribution with shape parameters α > 0 and β > 0. The shape parameters define the probability of success.
I want to find the values for α and β that best describe my data from the perspective of a beta-binomial distribution. My dataset players
consist of data about the number of hits (H), the number of at-bats (AB) and the conversion (H / AB) of a lot of baseball players. I estimate the PDF with the help of the answer of JulienD in Beta Binomial Function in Python
from scipy.special import beta
from scipy.misc import comb
pdf = comb(n, k) * beta(k + a, n - k + b) / beta(a, b)
Next, I write a loglikelihood function that we will minimize.
def loglike_betabinom(params, *args):
"""
Negative log likelihood function for betabinomial distribution
:param params: list for parameters to be fitted.
:param args: 2-element array containing the sample data.
:return: negative log-likelihood to be minimized.
"""
a, b = params[0], params[1]
k = args[0] # the conversion rate
n = args[1] # the number of at-bats (AE)
pdf = comb(n, k) * beta(k + a, n - k + b) / beta(a, b)
return -1 * np.log(pdf).sum()
Now, I want to write a function that minimizes loglike_betabinom
from scipy.optimize import minimize
init_params = [1, 10]
res = minimize(loglike_betabinom, x0=init_params,
args=(players['H'] / players['AB'], players['AB']),
bounds=bounds,
method='L-BFGS-B',
options={'disp': True, 'maxiter': 250})
print(res.x)
The result is [-6.04544138 2.03984464], which implies that α is negative which is not possible. I based my script on the following R-snippet. They get [101.359, 287.318]..
ll <- function(alpha, beta) {
x <- career_filtered$H
total <- career_filtered$AB
-sum(VGAM::dbetabinom.ab(x, total, alpha, beta, log=True))
}
m <- mle(ll, start = list(alpha = 1, beta = 10),
method = "L-BFGS-B", lower = c(0.0001, 0.1))
ab <- coef(m)
Can someone tell me what I am doing wrong? Help is much appreciated!!
One thing to pay attention to is that comb(n, k)
in your log-likelihood might not be well-behaved numerically for the values of n
and k
in your dataset. You can verify this by applying comb
to your data and see if inf
s appear.
One way to amend things could be to rewrite the negative log-likelihood as suggested in https://stackoverflow.com/a/32355701/4240413, i.e. as a function of logarithms of Gamma functions as in
from scipy.special import gammaln
import numpy as np
def loglike_betabinom(params, *args):
a, b = params[0], params[1]
k = args[0] # the OVERALL conversions
n = args[1] # the number of at-bats (AE)
logpdf = gammaln(n+1) + gammaln(k+a) + gammaln(n-k+b) + gammaln(a+b) - \
(gammaln(k+1) + gammaln(n-k+1) + gammaln(a) + gammaln(b) + gammaln(n+a+b))
return -np.sum(logpdf)
You can then minimize the log-likelihood with
from scipy.optimize import minimize
init_params = [1, 10]
# note that I am putting 'H' in the args
res = minimize(loglike_betabinom, x0=init_params,
args=(players['H'], players['AB']),
method='L-BFGS-B', options={'disp': True, 'maxiter': 250})
print(res)
and that should give reasonable results.
You could check How to properly fit a beta distribution in python? for inspiration if you want to rework further your code.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With