I am trying to use Bokeh to make an editable DataTable that updates the source data when the data is edited. I started with the standard DataTable example here, and make the editable kwarg to true. Here is where I am at:
from datetime import date
from random import randint
from bokeh.models import ColumnDataSource, Callback
from bokeh.models.widgets import DataTable, DateFormatter, TableColumn
from bokeh.io import output_file, output_notebook, show, vform
output_notebook()
data = dict(dates=[date(2014, 3, i+1) for i in range(10)],
downloads=[randint(0, 100) for i in range(10)])
source = ColumnDataSource(data)
columns = [TableColumn(field="dates", title="Date", formatter=DateFormatter()),
TableColumn(field="downloads", title="Downloads")]
callback = Callback(args=dict(Source=source), code="""
console.log( '#cell edited')""")
data_table = DataTable(source=source, columns=columns, width=400, height=280, editable=True)
data_table.on_change(callback,source)
show(vform(data_table))
This makes an editable data table, but I can't figure out how to get the callback to update the source data, or to configure the source data so that it automatically does that. I thought there was a way to automatically do that with ColumnDataSource, and after trying that tried to write a callback. However it appears the DataTable doesn't have a callback option, but it oddly has an on_change attribute.
Does anyone know how to do this?
The source data is updated with editable=True
and the on_change
callback is called when the data
attribute is updated. But we need an auxiliar variable to keep the old data source.
from bokeh.models import ColumnDataSource
from bokeh.models.widgets.tables import (
DataTable, TableColumn, IntEditor
)
from bokeh.io import curdoc
import copy
dict1 = {
'x': [0, 0, 0, 0, 0, 0],
'y': [0, 1, 0, 1, 0, 1]
}
source = ColumnDataSource(data=dict1)
old_source = ColumnDataSource(copy.deepcopy(dict1))
columns = [
TableColumn(field="x", title="x"),
TableColumn(field="y", title="y", editor=IntEditor(step=1))
]
data_table = DataTable(
source=source,
columns=columns,
width=800,
editable=True,
reorderable=False,
)
def on_change_data_source(attr, old, new):
# old, new and source.data are the same dictionaries
print('-- SOURCE DATA: {}'.format(source.data))
print('>> OLD SOURCE: {}'.format(old_source.data))
# to check changes in the 'y' column:
indices = list(range(len(old['y'])))
changes = [(i,j,k) for i,j,k in zip(indices, old_source.data['y'], source.data['y']) if j != k]
print('>> CHANGES: {}'.format(changes))
old_source.data = copy.deepcopy(source.data)
print('SOURCE DATA: {}'.format(source.data))
data_table.source.on_change('data', on_change_data_source)
curdoc().add_root(data_table)
This works on Bokeh v0.13.0 and lower versions. :
from bokeh.models import ColumnDataSource
from bokeh.models.widgets import DataTable, TableColumn, HTMLTemplateFormatter
from bokeh.io import curdoc
dict1 = {
'x':[0]*6,
'y':[0,1,0,1,0,1]
}
source = ColumnDataSource(data=dict1)
columns = [
TableColumn(field="x", title="x"),
TableColumn(field="y", title="y")
]
data_table = DataTable(
source=source,
columns=columns,
width=800,
editable=True,
)
def on_change_data_source(attr, old, new):
print('-- OLD DATA: {}'.format(old))
print('-- NEW DATA: {}'.format(new))
print('-- SOURCE DATA: {}'.format(source.data))
# to check changes in the 'y' column:
indices = list(range(len(old['y'])))
changes = [(i,j,k) for i,j,k in zip(indices, old['y'], new['y']) if j != k]
if changes != []:
for t in changes: # t = (index, old_val, new_val)
patch = {
'y' : [(t[0], int(t[2])), ] # the new value is received as a string
}
# source2.patch(patch) # to update the values on another source variable for instance
source.on_change('data', on_change_data_source)
curdoc().add_root(data_table)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With