I have a data frame df
:
library(tidyverse)
t <- c(103,104,108,120,127,129,140,142,150,151,160,177,178,183,186,187,191,194,198,199)
w <- c(1,1,1,-1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,-1,1,1,-1,-1)
df <- data_frame(t, w)
> dput(df)
structure(list(t = c(103, 104, 108, 120, 127, 129, 140, 142,
150, 151, 160, 177, 178, 183, 186, 187, 191, 194, 198, 199),
w = c(1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1,
-1, 1, 1, -1, -1)), .Names = c("t", "w"), row.names = c(NA,
-20L), class = c("tbl_df", "tbl", "data.frame"))
> df
# A tibble: 20 x 2
t w
<dbl> <dbl>
1 103 1.00
2 104 1.00
3 108 1.00
4 120 -1.00
5 127 -1.00
6 129 -1.00
7 140 -1.00
8 142 -1.00
9 150 1.00
10 151 1.00
11 160 -1.00
12 177 -1.00
13 178 1.00
14 183 1.00
15 186 1.00
16 187 -1.00
17 191 1.00
18 194 1.00
19 198 -1.00
20 199 -1.00
Now, if the value in w
is larger than zero, find the nearest previous negative w
, and assign the difference between the corresponding t
values to a new column d
. Otherwise, d
is equal to zero. I.e. the desired output should look like this:
t w d
103 1.00 NA (there is no previous w < 0)
104 1.00 NA (there is no previous w < 0)
108 1.00 NA (there is no previous w < 0)
120 -1.00 0
127 -1.00 0
129 -1.00 0
140 -1.00 0
142 -1.00 0
150 1.00 8 = 150 - 142
151 1.00 9 = 151 - 142
160 -1.00 0
177 -1.00 0
178 1.00 1 = 178 - 177
183 1.00 6 = 183 - 177
186 1.00 9 = 186 - 177
187 -1.00 0
191 1.00 4 = 191 - 187
194 1.00 7 = 194 - 187
198 -1.00 0
199 -1.00 0
(The NA
s above might be zero as well.)
Since yesterday I'm trying to attack this problem using findInterval()
, which()
, etc. but without success. Another way I was thinking about is to introduce somehow a variable shift in lag()
function...
Ideally, I would like to have a tidyverse
-like solution.
Any help would be very much appreciated. Thank you in advance!
Using data.table (since tidyverse currently has no non-equi joins):
library(data.table)
DT = data.table(df)
DT[, v := 0]
DT[w > 0, v :=
DT[w < 0][.SD, on=.(t < t), mult="last", i.t - x.t]
]
t w v
1: 103 1 NA
2: 104 1 NA
3: 108 1 NA
4: 120 -1 0
5: 127 -1 0
6: 129 -1 0
7: 140 -1 0
8: 142 -1 0
9: 150 1 8
10: 151 1 9
11: 160 -1 0
12: 177 -1 0
13: 178 1 1
14: 183 1 6
15: 186 1 9
16: 187 -1 0
17: 191 1 4
18: 194 1 7
19: 198 -1 0
20: 199 -1 0
It initializes the new column to 0, then replaces it on the subset of rows where w > 0
. The replacement uses a join of the subset of data, .SD
, where w > 0
to the part of the table where w < 0
, DT[w < 0]
. The join syntax is x[i, on=, j]
where in this case...
x = DT[w < 0]
i = .SD = DT[w > 0]
The join uses each row of i
to look up rows in x
based on the rules in on=
. When multiple matches are found, we take only the last (mult = "last"
).
j
is what we use the join to do, here calculate the difference between two columns. To disambiguate columns from each table, we use prefixes x.*
and i.*
.
Using cummax. I'm not sure if this generalizes, but it works for the example:
DT[, v := t - cummax(t*(w < 0))]
DT[cumsum(w < 0) == 0, v := NA]
I guess this requires that the t
column is sorted in increasing order.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With