In numpy, the numpy.dot()
function can be used to calculate the matrix product of two 2D arrays. I have two 3D arrays X and Y (say), and I'd like to calculate the matrix Z where Z[i] == numpy.dot(X[i], Y[i])
for all i
. Is this possible to do non-iteratively?
Dot product of two arrays. Specifically, If both a and b are 1-D arrays, it is inner product of vectors (without complex conjugation). If both a and b are 2-D arrays, it is matrix multiplication, but using matmul or a @ b is preferred. If either a or b is 0-D (scalar), it is equivalent to multiply and using numpy.
The dot product of two vectors is the sum of the products of elements with regards to position. The first element of the first vector is multiplied by the first element of the second vector and so on. The sum of these products is the dot product which can be done with np.
answer is zero (0).
How about:
from numpy.core.umath_tests import inner1d
Z = inner1d(X,Y)
For example:
X = np.random.normal(size=(10,5))
Y = np.random.normal(size=(10,5))
Z1 = inner1d(X,Y)
Z2 = [np.dot(X[k],Y[k]) for k in range(10)]
print np.allclose(Z1,Z2)
returns True
Edit Correction since I didn't see the 3D part of the question
from numpy.core.umath_tests import matrix_multiply
X = np.random.normal(size=(10,5,3))
Y = np.random.normal(size=(10,3,5))
Z1 = matrix_multiply(X,Y)
Z2 = np.array([np.dot(X[k],Y[k]) for k in range(10)])
np.allclose(Z1,Z2) # <== returns True
This works because (as the docstring states), matrix_multiply
provides
matrix_multiply(x1, x2[, out]) matrix
multiplication on last two dimensions
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With