I have a periodic signal I would like to find the period.
Since there is border effect, I first cut out the border and keep N periods by looking at the first and last minima.
Then, I compute the FFT.
Code:
import numpy as np
from matplotlib import pyplot as plt
# The list of a periodic something
L = [2.762, 2.762, 1.508, 2.758, 2.765, 2.765, 2.761, 1.507, 2.757, 2.757, 2.764, 2.764, 1.512, 2.76, 2.766, 2.766, 2.763, 1.51, 2.759, 2.759, 2.765, 2.765, 1.514, 2.761, 2.758, 2.758, 2.764, 1.513, 2.76, 2.76, 2.757, 2.757, 1.508, 2.763, 2.759, 2.759, 2.766, 1.517, 4.012]
# Round because there is a slight variation around actually equals values: 2.762, 2.761 or 1.508, 1.507
L = [round(elt, 1) for elt in L]
minima = min(L)
min_id = L.index(minima)
start = L.index(minima)
stop = L[::-1].index(minima)
L = L[start:len(L)-stop]
fft = np.fft.fft(np.asarray(L))/len(L)
fft = fft[range(int(len(L)/2))]
plt.plot(abs(fft))
I know how much time I have between 2 points of my list (i.e. the sampling frequency, in this case 190 Hz). I thought that the fft should give me a spike at the value corresponding to the number of point in a period, , thus giving me the number of point and the period. Yet, that is not at all the output I observed:
My current guess is that the spike at 0 corresponds to the mean of my signal and that this little spike around 7 should have been my period (although, the repeating pattern only includes 5 points).
What am I doing wrong? Thanks!
The correct size of the FFT lengths for a linear convolution, is Nfft=Lx+Ly−1, where obviously those lengths correspond to the length of your signals x and y.
The FFT is used in digital recording, sampling, additive synthesis and pitch correction software. The FFT's importance derives from the fact that it has made working in the frequency domain equally computationally feasible as working in the temporal or spatial domain.
1) Division by N: amplitude = abs(fft (signal)/N), where "N" is the signal length; 2) Multiplication by 2: amplitude = 2*abs(fft(signal)/N; 3) Division by N/2: amplitude: abs(fft (signal)./N/2);
If you are going to perform a N-point FFT in MATLAB, to get an appropriate answer, the length of your sequence should be lesser than or equal to N. Usually this N is chosen in power of 2, because MATLAB employs a Radix-2 FFT if it is, and a slower algorithm if it is not.
Your data is correct, it's just that you are not preprocessing it correctly:
If you include these two steps, the result should be more as you expect:
import numpy as np
import scipy.signal
from matplotlib import pyplot as plt
L = np.array([2.762, 2.762, 1.508, 2.758, 2.765, 2.765, 2.761, 1.507, 2.757, 2.757, 2.764, 2.764, 1.512, 2.76, 2.766, 2.766, 2.763, 1.51, 2.759, 2.759, 2.765, 2.765, 1.514, 2.761, 2.758, 2.758, 2.764, 1.513, 2.76, 2.76, 2.757, 2.757, 1.508, 2.763, 2.759, 2.759, 2.766, 1.517, 4.012])
L = np.round(L, 1)
# Remove DC component
L -= np.mean(L)
# Window signal
L *= scipy.signal.windows.hann(len(L))
fft = np.fft.rfft(L, norm="ortho")
plt.plot(L)
plt.figure()
plt.plot(abs(fft))
You will note that you will see a peak at around 8
, and another one at twice that, 16
. This is also expected: A periodic signal is always periodic after n*period
samples, where n is any natural number. In your case: n*8
.
Once the DC part of the signal is removed, the function can be convolved with itself to catch the period. Indeed, the convolution will feature peaks at each multiple of the period. The FFT can be applied to compute the convolution.
fft = np.fft.rfft(L, norm="ortho")
def abs2(x):
return x.real**2 + x.imag**2
selfconvol=np.fft.irfft(abs2(fft), norm="ortho")
The first output is not that good because the size of the image is not a multiple of the period.
As noticed by Nils Werner, a window can be applied to limit the effect of spectral leakage. As an alternative, the first crude estimate of the period can be used to trunk the signal and the procedure can be repeated as I answered in How do I scale an FFT-based cross-correlation such that its peak is equal to Pearson's rho.
From there, getting the period boils down to finding the first maximum. Here is a way it could be done:
import numpy as np
import scipy.signal
from matplotlib import pyplot as plt
L = np.array([2.762, 2.762, 1.508, 2.758, 2.765, 2.765, 2.761, 1.507, 2.757, 2.757, 2.764, 2.764, 1.512, 2.76, 2.766, 2.766, 2.763, 1.51, 2.759, 2.759, 2.765, 2.765, 1.514, 2.761, 2.758, 2.758, 2.764, 1.513, 2.76, 2.76, 2.757, 2.757, 1.508, 2.763, 2.759, 2.759, 2.766, 1.517, 4.012])
L = np.round(L, 1)
# Remove DC component, as proposed by Nils Werner
L -= np.mean(L)
# Window signal
#L *= scipy.signal.windows.hann(len(L))
fft = np.fft.rfft(L, norm="ortho")
def abs2(x):
return x.real**2 + x.imag**2
selfconvol=np.fft.irfft(abs2(fft), norm="ortho")
selfconvol=selfconvol/selfconvol[0]
plt.figure()
plt.plot(selfconvol)
plt.savefig('first.jpg')
plt.show()
# let's get a max, assuming a least 4 periods...
multipleofperiod=np.argmax(selfconvol[1:len(L)/4])
Ltrunk=L[0:(len(L)//multipleofperiod)*multipleofperiod]
fft = np.fft.rfft(Ltrunk, norm="ortho")
selfconvol=np.fft.irfft(abs2(fft), norm="ortho")
selfconvol=selfconvol/selfconvol[0]
plt.figure()
plt.plot(selfconvol)
plt.savefig('second.jpg')
plt.show()
#get ranges for first min, second max
fmax=np.max(selfconvol[1:len(Ltrunk)/4])
fmin=np.min(selfconvol[1:len(Ltrunk)/4])
xstartmin=1
while selfconvol[xstartmin]>fmin+0.2*(fmax-fmin) and xstartmin< len(Ltrunk)//4:
xstartmin=xstartmin+1
xstartmax=xstartmin
while selfconvol[xstartmax]<fmin+0.7*(fmax-fmin) and xstartmax< len(Ltrunk)//4:
xstartmax=xstartmax+1
xstartmin=xstartmax
while selfconvol[xstartmin]>fmin+0.2*(fmax-fmin) and xstartmin< len(Ltrunk)//4:
xstartmin=xstartmin+1
period=np.argmax(selfconvol[xstartmax:xstartmin])+xstartmax
print "The period is ",period
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With