I have a data frame of time related events.
Here is an example:
Name Event Order Sequence start_event end_event duration Group
JOHN 1 A 0 19 19 ID1
JOHN 2 A 60 112 52 ID1
JOHN 3 A 392 429 37 ID1
JOHN 4 B 282 329 47 ID1
JOHN 5 C 147 226 79 ID1
JOHN 6 C 566 611 45 ID1
ADAM 1 A 19 75 56 ID2
ADAM 2 A 384 407 23 ID2
ADAM 3 B 0 79 79 ID2
ADAM 4 B 505 586 81 ID2
ADAM 5 C 140 205 65 ID2
ADAM 6 C 522 599 77 ID2
There are essentially two different groups, ID 1 & 2. For each of those groups, there are 18 different name's. Each of those people appear in 3 different sequences, A-C. They then have active time periods during those sequences, and I mark the start/end events and calculate the duration.
I'd like to isolate each person and find when they have matching time intervals with people in both the opposite and same group ID.
Using the example data above, I want to find when John and Adam appear during the same sequence, at the same time. I then want to compare John to the rest of the 17 names in ID1/ID2.
I do not need to match the exact amount of shared 'active' time, I just am hoping to isolate the rows that are common.
My comforts are in using dplyr, but I can't crack this yet. I looked around and saw some similar examples with adjacency matrices, but those are with precise and exact data points. I can't figure out the strategy with a range/interval.
Thank you!
UPDATE: Here is the example of the desired result
Name Event Order Sequence start_event end_event duration Group
JOHN 3 A 392 429 37 ID1
JOHN 5 C 147 226 79 ID1
JOHN 6 C 566 611 45 ID1
ADAM 2 A 384 407 23 ID2
ADAM 5 C 140 205 65 ID2
ADAM 6 C 522 599 77 ID2
I'm thinking you'd isolate each event row for John, mark the start/end time frame and then iterate through every name and event for the remainder of the data frame to find time points that fit first within the same sequence, and then secondly against the bench-marked start/end time frame of John.
As I understand it, you want to return any row where an event for John with a particular sequence number overlaps an event for anybody else with the same sequence value. To achieve this, you could use split-apply-combine to split by sequence, identify the overlapping rows, and then re-combine:
overlap <- function(start1, end1, start2, end2) pmin(end1, end2) > pmax(start2, start1)
do.call(rbind, lapply(split(dat, dat$Sequence), function(x) {
jpos <- which(x$Name == "JOHN")
njpos <- which(x$Name != "JOHN")
over <- outer(jpos, njpos, function(a, b) {
overlap(x$start_event[a], x$end_event[a], x$start_event[b], x$end_event[b])
})
x[c(jpos[rowSums(over) > 0], njpos[colSums(over) > 0]),]
}))
# Name EventOrder Sequence start_event end_event duration Group
# A.2 JOHN 2 A 60 112 52 ID1
# A.3 JOHN 3 A 392 429 37 ID1
# A.7 ADAM 1 A 19 75 56 ID2
# A.8 ADAM 2 A 384 407 23 ID2
# C.5 JOHN 5 C 147 226 79 ID1
# C.6 JOHN 6 C 566 611 45 ID1
# C.11 ADAM 5 C 140 205 65 ID2
# C.12 ADAM 6 C 522 599 77 ID2
Note that my output includes two additional rows that are not shown in the question -- sequence A for John from time range [60, 112], which overlaps sequence A for Adam from time range [19, 75].
This could be pretty easily mapped into dplyr
language:
library(dplyr)
overlap <- function(start1, end1, start2, end2) pmin(end1, end2) > pmax(start2, start1)
sliceRows <- function(name, start, end) {
jpos <- which(name == "JOHN")
njpos <- which(name != "JOHN")
over <- outer(jpos, njpos, function(a, b) overlap(start[a], end[a], start[b], end[b]))
c(jpos[rowSums(over) > 0], njpos[colSums(over) > 0])
}
dat %>%
group_by(Sequence) %>%
slice(sliceRows(Name, start_event, end_event))
# Source: local data frame [8 x 7]
# Groups: Sequence [3]
#
# Name EventOrder Sequence start_event end_event duration Group
# (fctr) (int) (fctr) (int) (int) (int) (fctr)
# 1 JOHN 2 A 60 112 52 ID1
# 2 JOHN 3 A 392 429 37 ID1
# 3 ADAM 1 A 19 75 56 ID2
# 4 ADAM 2 A 384 407 23 ID2
# 5 JOHN 5 C 147 226 79 ID1
# 6 JOHN 6 C 566 611 45 ID1
# 7 ADAM 5 C 140 205 65 ID2
# 8 ADAM 6 C 522 599 77 ID2
If you wanted to be able to compute the overlaps for a specified pair of users, this could be done by wrapping the operation into a function that specifies the pair of users to be processed:
overlap <- function(start1, end1, start2, end2) pmin(end1, end2) > pmax(start2, start1)
pair.overlap <- function(dat, user1, user2) {
dat <- dat[dat$Name %in% c(user1, user2),]
do.call(rbind, lapply(split(dat, dat$Sequence), function(x) {
jpos <- which(x$Name == user1)
njpos <- which(x$Name == user2)
over <- outer(jpos, njpos, function(a, b) {
overlap(x$start_event[a], x$end_event[a], x$start_event[b], x$end_event[b])
})
x[c(jpos[rowSums(over) > 0], njpos[colSums(over) > 0]),]
}))
}
You could use pair.overlap(dat, "JOHN", "ADAM")
to get the previous output. Generating the overlaps for every pair of users can now be done with combn
and apply
:
apply(combn(unique(as.character(dat$Name)), 2), 2, function(x) pair.overlap(dat, x[1], x[2]))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With