Given the following question,
Given an array of integers A of length n, find the longest sequence {i_1, ..., i_k} such that i_j < i_(j+1) and A[i_j] <= A[i_(j+1)] for any j in [1, k-1].
Here is my solution, is this correct?
max_start = 0; // store the final result
max_end = 0;
try_start = 0; // store the initial result
try_end = 0;
FOR i=0; i<(A.length-1); i++ DO
if A[i] <= A[i+1]
try_end = i+1; // satisfy the condition so move the ending point
else // now the condition is broken
if (try_end - try_start) > (max_end - max_start) // keep it if it is the maximum
max_end = try_end;
max_start = try_start;
endif
try_start = i+1; // reset the search
try_end = i+1;
endif
ENDFOR
// Checking the boundary conditions based on comments by Jason
if (try_end - try_start) > (max_end - max_start)
max_end = try_end;
max_start = try_start;
endif
Somehow, I don't think this is a correct solution but I cannot find a counter-example that disapprove this solution.
anyone can help?
Thank you
I don't see any backtracking in your algorithm, and it seems to be suited for contiguous blocks of non-decreasing numbers. If I understand correctly, for the following input:
1 2 3 4 10 5 6 7
your algorithm would return 1 2 3 4 10
instead of 1 2 3 4 5 6 7
.
Try to find a solution using dynamic programming.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With