I've seen a few solutions to similar problems, but they all require iteration over the number of items to be added together.
Here's my goal: from a list of numbers, find all of the combinations (without replacement) that add up to a certain total. For example, if I have numbers 1,1,2,3,5
and total 5
, it should return 5
,2,3
, and 1,1,3
.
I was trying to use combn
but it required you to specify the number of items in each combination. Is there a way to do it that allows for solution sets of any size?
Remember, the formula to calculate combinations is nCr = n! / r! * (n - r)!, where n represents the number of items, and r represents the number of items being chosen at a time. Let's look at an example of how to calculate a combination.
Find cells combination that equal a given sum with Solver Add-in. If you are confused with above method, Excel contains a Solver Add-in feature, by using this add-in, you can also identify the numbers which total amount equals a given value.
First, we take an empty list 'res' and start a loop and traverse each element of the given list of integers. In each iteration, pop the element, store it in 'num', find remaining difference for sum K, and check if the difference exists in the given list or not.
This is precisely what combo/permuteGeneral
from RcppAlgos
(I am the author) were built for. Since we have repetition of specific elements in our sample vector, we will be finding combinations of multisets that meet our criteria. Note that this is different than the more common case of generating combinations with repetition where each element is allowed to be repeated m times. For many combination generating functions, multisets pose problems as duplicates are introduced and must be dealt with. This can become a bottleneck in your code if the size of your data is decently large. The functions in RcppAlgos
handle these cases efficiently without creating any duplicate results. I should mention that there are a couple of other great libraries that handle multisets quite well: multicool
and arrangements
.
Moving on to the task at hand, we can utilize the constraint arguments of comboGeneral
to find all combinations of our vector that meet a specific criteria:
vec <- c(1,1,2,3,5) ## using variables from @r2evans
uni <- unique(vec)
myRep <- rle(vec)$lengths
ans <- 5
library(RcppAlgos)
lapply(seq_along(uni), function(x) {
comboGeneral(uni, x, freqs = myRep,
constraintFun = "sum",
comparisonFun = "==",
limitConstraints = ans)
})
[[1]]
[,1]
[1,] 5
[[2]]
[,1] [,2]
[1,] 2 3
[[3]]
[,1] [,2] [,3]
[1,] 1 1 3
[[4]]
[,1] [,2] [,3] [,4] ## no solutions of length 4
These functions are highly optimized and extend well to larger cases. For example, consider the following example that would produce over 30 million combinations:
## N.B. Using R 4.0.0 with new updated RNG introduced in 3.6.0
set.seed(42)
bigVec <- sort(sample(1:30, 40, TRUE))
rle(bigVec)
Run Length Encoding
lengths: int [1:22] 2 1 2 3 4 1 1 1 2 1 ...
values : int [1:22] 1 2 3 4 5 7 8 9 10 11 ...
bigUni <- unique(bigVec)
bigRep <- rle(bigVec)$lengths
bigAns <- 199
len <- 12
comboCount(bigUni, len, freqs = bigRep)
[1] 32248100
All 300000+ results are returned very quickly:
system.time(bigTest <- comboGeneral(bigUni, len, freqs = bigRep,
constraintFun = "sum",
comparisonFun = "==",
limitConstraints = bigAns))
user system elapsed
0.273 0.004 0.271
head(bigTest)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
[1,] 1 1 2 3 4 25 26 26 26 27 28 30
[2,] 1 1 2 3 5 24 26 26 26 27 28 30
[3,] 1 1 2 3 5 25 25 26 26 27 28 30
[4,] 1 1 2 3 7 24 24 26 26 27 28 30
[5,] 1 1 2 3 7 24 25 25 26 27 28 30
[6,] 1 1 2 3 7 24 25 26 26 26 28 30
nrow(bigTest)
[1] 280018
all(rowSums(bigTest) == bigAns)
[1] TRUE
I must mention that generally when I see a problem like: "finding all combinations that sum to a particular number" my first thought is integer partitions. For example, in the related problem Getting all combinations which sum up to 100 in R, we can easily solve with the partitions
library. However, this approach does not extend to the general case (as we have here) where the vector contains specific repetition or we have a vector that contains values that don't easily convert to an integer equivalent (E.g. the vector (0.1, 0.2, 0.3, 0.4)
can easily be treated as 1:4
, however treating c(3.98486 7.84692 0.0038937 7.4879)
as integers and subsequently applying an integer partitions approach would require an extravagant amount of computing power rendering this method useless).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With