I want to create a numpy 2d array containning the cells indices, for example such 2x2 mat can be created using :
np.array([[[0,0],[0,1]],[[1,0],[1,1]]])
In other words cell at index i,j
should contain the list [i,j]
.
I could make a nested loop to do it c way but i am wondering if there is a fast pythonic way to do that?
For performance with NumPy, I would suggest an array initialization based approach -
def indices_array(n):
r = np.arange(n)
out = np.empty((n,n,2),dtype=int)
out[:,:,0] = r[:,None]
out[:,:,1] = r
return out
For a generic (m,n,2)
shaped output, we need some modifications :
def indices_array_generic(m,n):
r0 = np.arange(m) # Or r0,r1 = np.ogrid[:m,:n], out[:,:,0] = r0
r1 = np.arange(n)
out = np.empty((m,n,2),dtype=int)
out[:,:,0] = r0[:,None]
out[:,:,1] = r1
return out
Note: Also, read - 2019 addendum later on in this post for perf. boost with large m
, n
.
Sample run -
In [145]: n = 3
In [146]: indices_array(n)
Out[146]:
array([[[0, 0],
[0, 1],
[0, 2]],
[[1, 0],
[1, 1],
[1, 2]],
[[2, 0],
[2, 1],
[2, 2]]])
If you needed a 2
columns 2D
array, simply reshape -
In [147]: indices_array(n).reshape(-1,2)
Out[147]:
array([[0, 0],
[0, 1],
[0, 2],
[1, 0],
[1, 1],
[1, 2],
[2, 0],
[2, 1],
[2, 2]])
Timings and verification -
In [141]: n = 100
...: out1 = np.array(list(product(range(n), repeat=2))).reshape(n,n,2)
...: out2 = indices_array(n)
...: print np.allclose(out1, out2)
...:
True
# @Ofek Ron's solution
In [26]: %timeit np.array(list(product(range(n), repeat=2))).reshape(n,n,2)
100 loops, best of 3: 2.69 ms per loop
In [27]: # @Brad Solomon's soln
...: def ndindex_app(n):
...: row, col = n,n
...: return np.array(list(np.ndindex((row, col)))).reshape(row, col, 2)
...:
# @Brad Solomon's soln
In [28]: %timeit ndindex_app(n)
100 loops, best of 3: 5.72 ms per loop
# Proposed earlier in this post
In [29]: %timeit indices_array(n)
100000 loops, best of 3: 12.1 µs per loop
In [30]: 2690/12.1
Out[30]: 222.31404958677686
200x+
speedup there for n=100
with the initialization based one!
We can also use np.indices
-
def indices_array_generic_builtin(m,n):
return np.indices((m,n)).transpose(1,2,0)
Timings -
In [115]: %timeit indices_array_generic(1000,1000)
...: %timeit indices_array_generic_builtin(1000,1000)
100 loops, best of 3: 2.92 ms per loop
1000 loops, best of 3: 1.37 ms per loop
np.array(list(product(range(n), repeat=2))).reshape(n,n,2)
this works
You want np.ndindex
.
def coords(row, col):
return np.array(list(np.ndindex((row, col)))).reshape(row, col, 2)
coords(3, 2)
Out[32]:
array([[[0, 0],
[0, 1]],
[[1, 0],
[1, 1]],
[[2, 0],
[2, 1]]])
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With