I need to convert a sparse logic matrix into a list of sets, where each list[i] contains the set of rows with nonzero values for column[i]. The following code works, but I'm wondering if there's a faster way to do this. The actual data I'm using is approx 6000x6000 and much more sparse than this example.
import numpy as np
A = np.array([[1, 0, 0, 0, 0, 1],
[0, 1, 1, 1, 1, 0],
[1, 0, 1, 0, 1, 1],
[1, 1, 0, 1, 0, 1],
[1, 1, 0, 1, 0, 0],
[1, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 1, 0, 1, 0]])
rows,cols = A.shape
C = np.nonzero(A)
D = [set() for j in range(cols)]
for i in range(len(C[0])):
D[C[1][i]].add(C[0][i])
print D
If you represent the sparse array as a csc_matrix
, you can use the indices
and indptr
attributes to create the sets.
For example,
In [93]: A
Out[93]:
array([[1, 0, 0, 0, 0, 1],
[0, 1, 1, 1, 1, 0],
[1, 0, 1, 0, 1, 1],
[1, 1, 0, 1, 0, 1],
[1, 1, 0, 1, 0, 0],
[1, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 1, 0, 1, 0]])
In [94]: from scipy.sparse import csc_matrix
In [95]: C = csc_matrix(A)
In [96]: C.indptr
Out[96]: array([ 0, 5, 8, 12, 16, 20, 23], dtype=int32)
In [97]: C.indices
Out[97]: array([0, 2, 3, 4, 5, 1, 3, 4, 1, 2, 6, 7, 1, 3, 4, 6, 1, 2, 6, 7, 0, 2, 3], dtype=int32)
In [98]: D = [set(C.indices[C.indptr[i]:C.indptr[i+1]]) for i in range(C.shape[1])]
In [99]: D
Out[99]:
[{0, 2, 3, 4, 5},
{1, 3, 4},
{1, 2, 6, 7},
{1, 3, 4, 6},
{1, 2, 6, 7},
{0, 2, 3}]
For a list of arrays instead of sets, just don't call set()
:
In [100]: [C.indices[C.indptr[i]:C.indptr[i+1]] for i in range(len(C.indptr)-1)]
Out[100]:
[array([0, 2, 3, 4, 5], dtype=int32),
array([1, 3, 4], dtype=int32),
array([1, 2, 6, 7], dtype=int32),
array([1, 3, 4, 6], dtype=int32),
array([1, 2, 6, 7], dtype=int32),
array([0, 2, 3], dtype=int32)]
Since you already called np.nonzero
on A
, see if this works faster:
>>> from itertools import groupby
>>> C = np.transpose(np.nonzero(A.T))
>>> [{i[1] for i in g} for _, g in groupby(C, key=lambda x: x[0])]
[{0, 2, 3, 4, 5}, {1, 3, 4}, {1, 2, 6, 7}, {1, 3, 4, 6}, {1, 2, 6, 7}, {0, 2, 3}]
Some timing:
In [4]: %%timeit
...: C = np.transpose(np.nonzero(A.T))
...: [{i[1] for i in g} for _, g in groupby(C, key=lambda x: x[0])]
...:
10000 loops, best of 3: 39 µs per loop
In [7]: %%timeit
...: C=csc_matrix(A)
...: [set(C.indices[C.indptr[i]:C.indptr[i+1]]) for i in range(C.shape[1])]
...:
1000 loops, best of 3: 317 µs per loop
I don't know if increases speed much, but your iteration can streamlined with
for i,j in zip(*C):
D[j].add(i)
A defaultdict could add a nice touch to this task:
In [58]: from collections import defaultdict
In [59]: D=defaultdict(set)
In [60]: for i,j in zip(*C):
D[j].add(i)
In [61]: D
Out[61]: defaultdict(<class 'set'>, {0: {0, 2, 3, 4, 5}, 1: {1, 3, 4}, 2: {1, 2, 6, 7}, 3: {1, 3, 4, 6}, 4: {1, 2, 6, 7}, 5: {0, 2, 3}})
In [62]: dict(D)
Out[62]:
{0: {0, 2, 3, 4, 5},
1: {1, 3, 4},
2: {1, 2, 6, 7},
3: {1, 3, 4, 6},
4: {1, 2, 6, 7},
5: {0, 2, 3}}
An alternative with sparse matrices is the lil
format which saves the data a list of lists. Since you want to collect data by column, make the matrix from A.T
(transpose)
In [70]: M=sparse.lil_matrix(A.T)
In [71]: M.rows
Out[71]:
array([[0, 2, 3, 4, 5], [1, 3, 4], [1, 2, 6, 7], [1, 3, 4, 6],
[1, 2, 6, 7], [0, 2, 3]], dtype=object)
Which are the same lists.
For this small case direct iteration is faster than sparse
In [72]: %%timeit
....: D=defaultdict(set)
....: for i,j in zip(*C):
D[j].add(i)
....:
10000 loops, best of 3: 24.4 µs per loop
In [73]: %%timeit
....: D=[set() for j in range(A.shape[1])]
....: for i,j in zip(*C):
D[j].add(i)
....:
10000 loops, best of 3: 22.9 µs per loop
In [74]: %%timeit
....: M=sparse.lil_matrix(A.T)
....: M.rows
....:
1000 loops, best of 3: 588 µs per loop
In [75]: %%timeit
....: C=sparse.csc_matrix(A)
....: D = [set(C.indices[C.indptr[i]:C.indptr[i+1]]) for i in range(C.shape[1])] ....:
1000 loops, best of 3: 476 µs per loop
For a large array, the setup time for the sparse matrix will less significant.
==========================
Do we really need set
? A variation on the lil
approach is to start with the nonzero
on the transpose, i.e. by column
In [90]: C=np.nonzero(A.T)
# (array([0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5], dtype=int32),
# array([0, 2, 3, 4, 5, 1, 3, 4, 1, 2, 6, 7, 1, 3, 4, 6, 1, 2, 6, 7, 0, 2, 3], dtype=int32))
The numbers are all there; we just have to split the 2nd list into pieces corresponding to the first
In [91]: i=np.nonzero(np.diff(C[0]))[0]+1
In [92]: np.split(C[1],i)
Out[92]:
[array([0, 2, 3, 4, 5], dtype=int32),
array([1, 3, 4], dtype=int32),
array([1, 2, 6, 7], dtype=int32),
array([1, 3, 4, 6], dtype=int32),
array([1, 2, 6, 7], dtype=int32),
array([0, 2, 3], dtype=int32)]
This is slower than the direct iteration but I suspect it scales better; possibly as well as any of the sparse alternatives:
In [96]: %%timeit
C=np.nonzero(A.T)
....: i=np.nonzero(np.diff(C[0]))[0]+1
....: np.split(C[1],i)
....:
10000 loops, best of 3: 55.2 µs per loop
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With