Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Faster way to find the first TRUE value in a vector

Tags:

In one function I very often need to use code like:

which(x==1)[1] which(x>1)[1] x[x>10][1] 

where x is a numeric vector. summaryRprof() shows that I spend >80% of the time on relational operators. I wonder if there is a function that does comparison only till the first TRUE value is reached to speed up my code. For-loop is slower than the options provided above.

like image 471
user1603038 Avatar asked Nov 27 '13 15:11

user1603038


1 Answers

I don't know of a pure R way to do this, so I wrote a C function to do it for the quantstrat package. This function was written with a specific purpose in mind, so it's not as general as I would like. For example, you may notice that it only works on real/double/numeric data, so be sure to coerce Data to that before calling the .firstCross function.

#include <R.h> #include <Rinternals.h>  SEXP firstCross(SEXP x, SEXP th, SEXP rel, SEXP start) {     int i, int_rel, int_start;     double *real_x=NULL, real_th;      if(ncols(x) > 1)         error("only univariate data allowed");      /* this currently only works for real x and th arguments      * support for other types may be added later */     real_th = asReal(th);     int_rel = asInteger(rel);     int_start = asInteger(start)-1;      switch(int_rel) {         case 1:  /* >  */             real_x = REAL(x);             for(i=int_start; i<nrows(x); i++)                 if(real_x[i] >  real_th)                     return(ScalarInteger(i+1));             break;         case 2:  /* <  */             real_x = REAL(x);             for(i=int_start; i<nrows(x); i++)                 if(real_x[i] <  real_th)                     return(ScalarInteger(i+1));             break;         case 3:  /* == */             real_x = REAL(x);             for(i=int_start; i<nrows(x); i++)                 if(real_x[i] == real_th)                     return(ScalarInteger(i+1));             break;         case 4:  /* >= */             real_x = REAL(x);             for(i=int_start; i<nrows(x); i++)                 if(real_x[i] >= real_th)                     return(ScalarInteger(i+1));             break;         case 5:  /* <= */             real_x = REAL(x);             for(i=int_start; i<nrows(x); i++)                 if(real_x[i] <= real_th)                     return(ScalarInteger(i+1));             break;         default:             error("unsupported relationship operator");   }   /* return number of observations if relationship is never TRUE */   return(ScalarInteger(nrows(x))); } 

And here's the R function that calls it:

.firstCross <- function(Data, threshold=0, relationship, start=1) {     rel <- switch(relationship[1],             '>'    =  ,             'gt'   = 1,             '<'    =  ,             'lt'   = 2,             '=='   =  ,             'eq'   = 3,             '>='   =  ,             'gte'  =  ,             'gteq' =  ,             'ge'   = 4,             '<='   =  ,             'lte'  =  ,             'lteq' =  ,             'le'   = 5)     .Call('firstCross', Data, threshold, rel, start) } 

Some benchmarks, just for fun.

> library(quantstrat) > library(microbenchmark) > firstCross <- quantstrat:::.firstCross > set.seed(21) > x <- rnorm(1e6) > microbenchmark(which(x > 3)[1], firstCross(x,3,">"), times=10) Unit: microseconds                   expr      min       lq    median       uq      max neval        which(x > 3)[1] 9482.081 9578.072 9597.3870 9690.448 9820.176    10  firstCross(x, 3, ">")   11.370   11.675   31.9135   34.443   38.614    10 > which(x>3)[1] [1] 919 > firstCross(x,3,">") [1] 919 

Note that firstCross will yield a larger relative speedup the larger Data is (because R's relational operators have to finish comparing the entire vector).

> x <- rnorm(1e7) > microbenchmark(which(x > 3)[1], firstCross(x,3,">"), times=10) Unit: microseconds                   expr      min        lq    median        uq        max neval        which(x > 3)[1] 94536.21 94851.944 95799.857 96154.756 113962.794    10  firstCross(x, 3, ">")     5.08     5.507    25.845    32.164     34.183    10 > which(x>3)[1] [1] 97 > firstCross(x,3,">") [1] 97 

...and it won't be appreciably faster if the first TRUE value is near the end of the vector.

> microbenchmark(which(x==last(x))[1], firstCross(x,last(x),"eq"),times=10) Unit: milliseconds                          expr      min       lq   median       uq       max neval        which(x == last(x))[1] 92.56311 93.85415 94.38338 98.18422 106.35253    10  firstCross(x, last(x), "eq") 86.55415 86.70980 86.98269 88.32168  92.97403    10 > which(x==last(x))[1] [1] 10000000 > firstCross(x,last(x),"eq") [1] 10000000 
like image 144
Joshua Ulrich Avatar answered Oct 11 '22 09:10

Joshua Ulrich