While trying to solve the "paths on a grid" problem, I have written the code
def paths(n, k)
p = (1..n+k).to_a
p.combination(n).to_a.size
end
The code works fine, for instance if n == 8 and k == 2
the code returns 45
which is the correct number of paths.
However the code is very slow when using larger numbers and I'm struggling to figure out how to quicken the process.
Rather than building the array of combinations just to count it, just write the function that defines the number of combinations. I'm sure there are also gems that include this and many other combinatorics functions.
Note that I am using the gem Distribution for the Math.factorial
method, but that is another easy one to write. Given that, though, I'd suggest taking @stefan's answer, as it's less overhead.
def n_choose_k(n, k)
Math.factorial(n) / (Math.factorial(k) * Math.factorial(n - k))
end
n_choose_k(10, 8)
# => 45
Note that the n
and k
here refer to slightly different things than in your method, but I am keeping them as it is highly standard nomenclature in combinatorics for this function.
def combinations(n, k)
return 1 if k == 0 or k == n
(k + 1 .. n).reduce(:*) / (1 .. n - k).reduce(:*)
end
combinations(8, 2) #=> 28
The original equation is
combinations(n, k) = n! / k!(n - k)!
Since n! / k! = (1 * 2 * ... * n) / (1 * 2 * ... * k)
, for any k <= n
there is a (1 * 2 * ... * k)
factor both in the numerator and in the denominator, so we can cancel this factor. This makes the equation become
combinations(n, k) = (k + 1) * (k + 2) * ... * (n) / (n - k)!
which is exactly what I did in my Ruby code.
The answers that suggest computing full factorials will generate lots of unnecessary overhead when working with big numbers. You should use the method below for calculating the binomial coefficient: n!/(k!(n-k)!)
def n_choose_k(n, k)
return 0 if k > n
result = 1
1.upto(k) do |d|
result *= n
result /= d
n -= 1
end
result
end
This will perform the minimum operations needed. Note that incrementing d while decrementing n guarantees that there will be no rounding errors. For example, {n, n+1} is guaranteed to have at least one element divisible by two, {n, n+1, n+2} is guaranteed to have at least one element divisible by three and so on.
Your code can be rewritten as:
def paths(x, y)
# Choice of x or y for the second parameter is arbitrary
n_choose_k(x + y, x)
end
puts paths(8, 2) # 45
puts paths(2, 8) # 45
I assume that n and k in the original version were meant to be dimensions so i labeled them x and y instead. There's no need to generate an array here.
Edit: Here is a benchmark script...
require 'distribution'
def puts_time
$stderr.puts 'Completed in %f seconds' % (Time.now - $start_time)
$start_time = Time.now
end
def n_choose_k(n, k)
return 0 if k > n
result = 1
1.upto(k) do |d|
result *= n
result /= d
n -= 1
end
result
end
def n_choose_k_distribution(n, k)
Math.factorial(n) / (Math.factorial(k) * Math.factorial(n - k))
end
def n_choose_k_inject(n, k)
(1..n).inject(:*) / ((1..k).inject(:*) * (1..n-k).inject(:*))
end
def benchmark(&callback)
100.upto(300) do |n|
25.upto(75) do |k|
callback.call(n, k)
end
end
end
$start_time = Time.now
puts 'Distribution gem...'
benchmark { |n, k| n_choose_k_distribution(n, k) }
puts_time
puts 'Inject method...'
benchmark { |n, k| n_choose_k_inject(n, k) }
puts_time
puts 'Answer...'
benchmark { |n, k| n_choose_k(n, k) }
puts_time
Output on my system is:
Distribution gem...
Completed in 1.141804 seconds
Inject method...
Completed in 1.106018 seconds
Answer...
Completed in 0.150989 seconds
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With