By "similar vector" I define a vector that differs from a given one at just one position by either -1 or 1. However, if the element of the given one is zero, only difference by 1 is possible. Examples:
similar_vectors(np.array([0,0,0]))
array([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.]])
similar_vectors(np.array([1,0,2,3,0,0,1]))
array([[ 0., 0., 2., 3., 0., 0., 1.],
[ 2., 0., 2., 3., 0., 0., 1.],
[ 1., 1., 2., 3., 0., 0., 1.],
[ 1., 0., 1., 3., 0., 0., 1.],
[ 1., 0., 3., 3., 0., 0., 1.],
[ 1., 0., 2., 2., 0., 0., 1.],
[ 1., 0., 2., 4., 0., 0., 1.],
[ 1., 0., 2., 3., 1., 0., 1.],
[ 1., 0., 2., 3., 0., 1., 1.],
[ 1., 0., 2., 3., 0., 0., 0.],
[ 1., 0., 2., 3., 0., 0., 2.]])
I would like to obtain maximally fast implementation of similar_vectors(vector)
function mentioned above. It is run in my simulation millions of times for vector
of length ~few dozens, so speed is crucial. I am interested both in pure numpy solutions as well as some wrappers to other languages. The code can be parallel.
My current implementation is the following:
def singleOne(length,positionOne): #generates a vector of len length filled with zeros apart from a single one at positionOne
arr=np.zeros(length)
arr[positionOne]=1
return arr
def similar_vectors(state):
connected=[]
for i in range(len(state)):
if(state[i]!=0):
connected.append(state-singleOne(state.shape[0],i))
connected.append(state+singleOne(state.shape[0],i))
return np.array(connected)
This is terribly slow due to the for loop that I can't easily get rid of.
For reference I'm attaching the profile from 1000 executions of similar_vectors(vector)
:
37003 function calls in 0.070 seconds
Ordered by: cumulative time
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.070 0.070 {built-in method builtins.exec}
1 0.003 0.003 0.070 0.070 <string>:2(<module>)
1000 0.035 0.000 0.064 0.000 <ipython-input-19-69431411f902>:6(similar_vectors)
11000 0.007 0.000 0.021 0.000 <ipython-input-19-69431411f902>:1(singleOne)
11000 0.014 0.000 0.014 0.000 {built-in method numpy.core.multiarray.zeros}
2000 0.009 0.000 0.009 0.000 {built-in method numpy.core.multiarray.array}
11000 0.002 0.000 0.002 0.000 {method 'append' of 'list' objects}
1000 0.000 0.000 0.000 0.000 {built-in method builtins.len}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
Here's a vectorized approach.
You could create a diagonal matrix of 1s
and another of -1s
,
then add the former to the original array and separately the latter on those positions where the original array is not 0
. Then use np.concatenate
to concatenate both ndarrays:
def similar_vectors(a):
ones = np.ones(len(a))
w = np.flatnonzero(a!=0)
return np.concatenate([np.diag(-ones)[w]+a, np.diag(ones)+a])
Sample run
a = np.array([1,0,2,3,0,0,1])
similar_vectors(a)
array([[0., 0., 2., 3., 0., 0., 1.],
[1., 0., 1., 3., 0., 0., 1.],
[1., 0., 2., 2., 0., 0., 1.],
[1., 0., 2., 3., 0., 0., 0.],
[2., 0., 2., 3., 0., 0., 1.],
[1., 1., 2., 3., 0., 0., 1.],
[1., 0., 3., 3., 0., 0., 1.],
[1., 0., 2., 4., 0., 0., 1.],
[1., 0., 2., 3., 1., 0., 1.],
[1., 0., 2., 3., 0., 1., 1.],
[1., 0., 2., 3., 0., 0., 2.]])
a = np.array([0,0,0])
similar_vectors(a)
array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With