The math. isnan(value) method takes a number value as input and returns True if the value is a NaN value and returns False otherwise. Therefore we can check if there a NaN value in a list or array of numbers using the math. isnan() method.
In Python, NumPy with the latest version where nan is a value only for floating arrays only which stands for not a number and is a numeric data type which is used to represent an undefined value. In Python, NumPy defines NaN as a constant value.
Ray's solution is good. However, on my machine it is about 2.5x faster to use numpy.sum
in place of numpy.min
:
In [13]: %timeit np.isnan(np.min(x))
1000 loops, best of 3: 244 us per loop
In [14]: %timeit np.isnan(np.sum(x))
10000 loops, best of 3: 97.3 us per loop
Unlike min
, sum
doesn't require branching, which on modern hardware tends to be pretty expensive. This is probably the reason why sum
is faster.
edit The above test was performed with a single NaN right in the middle of the array.
It is interesting to note that min
is slower in the presence of NaNs than in their absence. It also seems to get slower as NaNs get closer to the start of the array. On the other hand, sum
's throughput seems constant regardless of whether there are NaNs and where they're located:
In [40]: x = np.random.rand(100000)
In [41]: %timeit np.isnan(np.min(x))
10000 loops, best of 3: 153 us per loop
In [42]: %timeit np.isnan(np.sum(x))
10000 loops, best of 3: 95.9 us per loop
In [43]: x[50000] = np.nan
In [44]: %timeit np.isnan(np.min(x))
1000 loops, best of 3: 239 us per loop
In [45]: %timeit np.isnan(np.sum(x))
10000 loops, best of 3: 95.8 us per loop
In [46]: x[0] = np.nan
In [47]: %timeit np.isnan(np.min(x))
1000 loops, best of 3: 326 us per loop
In [48]: %timeit np.isnan(np.sum(x))
10000 loops, best of 3: 95.9 us per loop
I think np.isnan(np.min(X))
should do what you want.
There are two general approaches here:
nan
and take any
.nan
s (like sum
) and check its result.While the first approach is certainly the cleanest, the heavy optimization of some of the cumulative operations (particularly the ones that are executed in BLAS, like dot
) can make those quite fast. Note that dot
, like some other BLAS operations, are multithreaded under certain conditions. This explains the difference in speed between different machines.
import numpy as np
import perfplot
def min(a):
return np.isnan(np.min(a))
def sum(a):
return np.isnan(np.sum(a))
def dot(a):
return np.isnan(np.dot(a, a))
def any(a):
return np.any(np.isnan(a))
def einsum(a):
return np.isnan(np.einsum("i->", a))
b = perfplot.bench(
setup=np.random.rand,
kernels=[min, sum, dot, any, einsum],
n_range=[2 ** k for k in range(25)],
xlabel="len(a)",
)
b.save("out.png")
b.show()
Even there exist an accepted answer, I'll like to demonstrate the following (with Python 2.7.2 and Numpy 1.6.0 on Vista):
In []: x= rand(1e5)
In []: %timeit isnan(x.min())
10000 loops, best of 3: 200 us per loop
In []: %timeit isnan(x.sum())
10000 loops, best of 3: 169 us per loop
In []: %timeit isnan(dot(x, x))
10000 loops, best of 3: 134 us per loop
In []: x[5e4]= NaN
In []: %timeit isnan(x.min())
100 loops, best of 3: 4.47 ms per loop
In []: %timeit isnan(x.sum())
100 loops, best of 3: 6.44 ms per loop
In []: %timeit isnan(dot(x, x))
10000 loops, best of 3: 138 us per loop
Thus, the really efficient way might be heavily dependent on the operating system. Anyway dot(.)
based seems to be the most stable one.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With