In order to classify a jpeg image in R, I would like to get the RGB values of each pixel.
My question: Is there a way to extract RGB channels from a jpeg image in R ?
You have several package to read in JPEG. Here I use package jpeg
:
library(jpeg)
img <- readJPEG("Rlogo.jpg")
dim(img)
[1] 76 100 3
As you can see, there is 3 layers: they correspond to your R, G and B values. In each layer, each cell is a pixel.
img[35:39,50:54,]
, , 1
[,1] [,2] [,3] [,4] [,5]
[1,] 0.5098039 0.5921569 0.4549020 0.3372549 0.1921569
[2,] 0.5098039 0.6000000 0.4549020 0.3372549 0.1921569
[3,] 0.5137255 0.6000000 0.4549020 0.3450980 0.1921569
[4,] 0.5215686 0.6039216 0.4627451 0.3450980 0.1921569
[5,] 0.5215686 0.6039216 0.4627451 0.3450980 0.1882353
, , 2
[,1] [,2] [,3] [,4] [,5]
[1,] 0.5882353 0.6666667 0.5098039 0.3803922 0.2156863
[2,] 0.5882353 0.6627451 0.5098039 0.3803922 0.2156863
[3,] 0.5843137 0.6627451 0.5098039 0.3764706 0.2156863
[4,] 0.5843137 0.6627451 0.5058824 0.3764706 0.2117647
[5,] 0.5843137 0.6627451 0.5058824 0.3764706 0.2156863
, , 3
[,1] [,2] [,3] [,4] [,5]
[1,] 0.7254902 0.7921569 0.6156863 0.4588235 0.2705882
[2,] 0.7254902 0.7921569 0.6156863 0.4588235 0.2784314
[3,] 0.7254902 0.7921569 0.6156863 0.4588235 0.2784314
[4,] 0.7176471 0.7921569 0.6156863 0.4666667 0.2862745
[5,] 0.7176471 0.7921569 0.6156863 0.4666667 0.2862745
I recommend the biOps
package for image manipulation.
library(biOps)
x <- readJpeg(system.file("samples", "violet.jpg", package="biOps"))
plot(x)
r <- imgRedBand(x)
plot(r)
image(x[,,1])
g <- imgGreenBand(x)
plot(g)
image(x[,,2])
b <- imgBlueBand(x)
plot(b)
image(x[,,3])
redPal <- colorRampPalette(c("black", "red"))
greenPal <- colorRampPalette(c("black", "green"))
bluePal <- colorRampPalette(c("black", "blue"))
x11(width=9, height=2.5)
par(mfcol=c(1,3))
image(x=seq(ncol(r)), y=seq(nrow(r)), z=t(r), asp=1, xaxt="n", yaxt="n", bty="n", xlab="", ylab="", main="red channel", col=redPal(256))
image(x=seq(ncol(g)), y=seq(nrow(g)), z=t(g), asp=1, xaxt="n", yaxt="n", bty="n", xlab="", ylab="", main="green channel", col=greenPal(256))
image(x=seq(ncol(b)), y=seq(nrow(b)), z=t(b), asp=1, xaxt="n", yaxt="n", bty="n", xlab="", ylab="", main="blue channel", col=bluePal(256))
I like the approach via R's biOps
package. After loading your data into canvas, you're able to convert your jpg file from imagedata
to raster
and do some further processing. Here's my code:
# Required packages
library(biOps)
library(raster)
# Load and plot data
data(logo)
jpg <- logo
plot.imagedata(jpg)
# Convert imagedata to raster
rst.blue <- raster(jpg[,,1])
rst.green <- raster(jpg[,,2])
rst.red <- raster(jpg[,,3])
# Plot single raster images and RGB composite
plot(stack(rst.blue, rst.green, rst.red),
main = c("Blue band", "Green band", "Red band"))
plotRGB(stack(rst.blue, rst.green, rst.red))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With