Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

extract RGB channels from a jpeg image in R

Tags:

r

rgb

jpeg

raster

In order to classify a jpeg image in R, I would like to get the RGB values of each pixel.

My question: Is there a way to extract RGB channels from a jpeg image in R ?

like image 639
DJack Avatar asked Apr 23 '13 07:04

DJack


3 Answers

You have several package to read in JPEG. Here I use package jpeg:

library(jpeg)
img <- readJPEG("Rlogo.jpg")

dim(img)
[1]  76 100   3

As you can see, there is 3 layers: they correspond to your R, G and B values. In each layer, each cell is a pixel.

img[35:39,50:54,]
, , 1

          [,1]      [,2]      [,3]      [,4]      [,5]
[1,] 0.5098039 0.5921569 0.4549020 0.3372549 0.1921569
[2,] 0.5098039 0.6000000 0.4549020 0.3372549 0.1921569
[3,] 0.5137255 0.6000000 0.4549020 0.3450980 0.1921569
[4,] 0.5215686 0.6039216 0.4627451 0.3450980 0.1921569
[5,] 0.5215686 0.6039216 0.4627451 0.3450980 0.1882353

, , 2

          [,1]      [,2]      [,3]      [,4]      [,5]
[1,] 0.5882353 0.6666667 0.5098039 0.3803922 0.2156863
[2,] 0.5882353 0.6627451 0.5098039 0.3803922 0.2156863
[3,] 0.5843137 0.6627451 0.5098039 0.3764706 0.2156863
[4,] 0.5843137 0.6627451 0.5058824 0.3764706 0.2117647
[5,] 0.5843137 0.6627451 0.5058824 0.3764706 0.2156863

, , 3

          [,1]      [,2]      [,3]      [,4]      [,5]
[1,] 0.7254902 0.7921569 0.6156863 0.4588235 0.2705882
[2,] 0.7254902 0.7921569 0.6156863 0.4588235 0.2784314
[3,] 0.7254902 0.7921569 0.6156863 0.4588235 0.2784314
[4,] 0.7176471 0.7921569 0.6156863 0.4666667 0.2862745
[5,] 0.7176471 0.7921569 0.6156863 0.4666667 0.2862745
like image 50
plannapus Avatar answered Nov 13 '22 00:11

plannapus


I recommend the biOpspackage for image manipulation.

Here is an example:

library(biOps)
x <- readJpeg(system.file("samples", "violet.jpg", package="biOps"))
plot(x)

r <- imgRedBand(x)
plot(r)
image(x[,,1])

g <- imgGreenBand(x)
plot(g)
image(x[,,2])

b <- imgBlueBand(x)
plot(b)
image(x[,,3])

Visual example:

redPal <- colorRampPalette(c("black", "red"))
greenPal <- colorRampPalette(c("black", "green"))
bluePal <- colorRampPalette(c("black", "blue"))

x11(width=9, height=2.5)
par(mfcol=c(1,3))
image(x=seq(ncol(r)), y=seq(nrow(r)), z=t(r), asp=1, xaxt="n", yaxt="n", bty="n", xlab="", ylab="", main="red channel", col=redPal(256))
image(x=seq(ncol(g)), y=seq(nrow(g)), z=t(g), asp=1, xaxt="n", yaxt="n", bty="n", xlab="", ylab="", main="green channel", col=greenPal(256))
image(x=seq(ncol(b)), y=seq(nrow(b)), z=t(b), asp=1, xaxt="n", yaxt="n", bty="n", xlab="", ylab="", main="blue channel", col=bluePal(256))

enter image description here

like image 29
Marc in the box Avatar answered Nov 13 '22 00:11

Marc in the box


I like the approach via R's biOps package. After loading your data into canvas, you're able to convert your jpg file from imagedata to raster and do some further processing. Here's my code:

# Required packages
library(biOps)
library(raster)

# Load and plot data
data(logo)
jpg <- logo

plot.imagedata(jpg)

# Convert imagedata to raster
rst.blue <- raster(jpg[,,1])
rst.green <- raster(jpg[,,2])
rst.red <- raster(jpg[,,3])

# Plot single raster images and RGB composite
plot(stack(rst.blue, rst.green, rst.red), 
     main = c("Blue band", "Green band", "Red band"))
plotRGB(stack(rst.blue, rst.green, rst.red))
like image 5
fdetsch Avatar answered Nov 13 '22 01:11

fdetsch