Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Extract last non-missing value in row with data.table

Tags:

r

data.table

I have a data.table of factor columns, and I want to pull out the label of the last non-missing value in each row. It's kindof a typical max.col situation, but I don't want to needlessly be coercing as I am trying to optimize this code using data.table. The real data has other types of columns as well.

Here is the example,

## Some sample data
set.seed(0)
dat <- sapply(split(letters[1:25], rep.int(1:5, 5)), sample, size=8, replace=TRUE)
dat[upper.tri(dat)] <- NA
dat[4:5, 4:5] <- NA                              # the real data isnt nice and upper.triangular
dat <- data.frame(dat, stringsAsFactors = TRUE)  # factor columns

## So, it looks like this
setDT(dat)[]
#    X1 X2 X3 X4 X5
# 1:  u NA NA NA NA
# 2:  f  q NA NA NA
# 3:  f  b  w NA NA
# 4:  k  g  h NA NA
# 5:  u  b  r NA NA
# 6:  f  q  w  x  t
# 7:  u  g  h  i  e
# 8:  u  q  r  n  t

## I just want to get the labels of the factors
## that are 'rightmost' in each row.  I tried a number of things 
## that probably don't make sense here.
## This just about gets the column index
dat[, colInd := sum(!is.na(.SD)), by=1:nrow(dat)]

This is the goal though, to extract these labels, here using regular base functions.

## Using max.col and a data.frame
df1 <- as.data.frame(dat)
inds <- max.col(is.na(as.matrix(df1)), ties="first")-1
inds[inds==0] <- ncol(df1)
df1[cbind(1:nrow(df1), inds)]
# [1] "u" "q" "w" "h" "r" "t" "e" "t"
like image 273
Rorschach Avatar asked Nov 12 '15 04:11

Rorschach


3 Answers

Here's another way:

dat[, res := NA_character_]
for (v in rev(names(dat))[-1]) dat[is.na(res), res := get(v)]


   X1 X2 X3 X4 X5 res
1:  u NA NA NA NA   u
2:  f  q NA NA NA   q
3:  f  b  w NA NA   w
4:  k  g  h NA NA   h
5:  u  b  r NA NA   r
6:  f  q  w  x  t   t
7:  u  g  h  i  e   e
8:  u  q  r  n  t   t

Benchmarks Using the same data as @alexis_laz and making (apparently) superficial changes to the functions, I see different results. Just showing them here in case anyone is curious. Alexis' answer (with small modifications) still comes out ahead.

Functions:

alex = function(x, ans = rep_len(NA, length(x[[1L]])), wh = seq_len(length(x[[1L]]))){
    if(!length(wh)) return(ans)
    ans[wh] = as.character(x[[length(x)]])[wh]
    Recall(x[-length(x)], ans, wh[is.na(ans[wh])])
}   

alex2 = function(x){
    x[, res := NA_character_]
    wh = x[, .I]
    for (v in (length(x)-1):1){
      if (!length(wh)) break
      set(x, j="res", i=wh, v = x[[v]][wh])
      wh = wh[is.na(x$res[wh])]
    }
    x$res
}

frank = function(x){
    x[, res := NA_character_]
    for(v in rev(names(x))[-1]) x[is.na(res), res := get(v)]
    return(x$res)       
}

frank2 = function(x){
    x[, res := NA_character_]
    for(v in rev(names(x))[-1]) x[is.na(res), res := .SD, .SDcols=v]
    x$res
}

Example data and benchmark:

DAT1 = as.data.table(lapply(ceiling(seq(0, 1e4, length.out = 1e2)), 
                     function(n) c(rep(NA, n), sample(letters, 3e5 - n, TRUE))))
DAT2 = copy(DAT1)
DAT3 = as.list(copy(DAT1))
DAT4 = copy(DAT1)

library(microbenchmark)
microbenchmark(frank(DAT1), frank2(DAT2), alex(DAT3), alex2(DAT4), times = 30)

Unit: milliseconds
         expr       min        lq      mean    median         uq        max neval
  frank(DAT1) 850.05980 909.28314 985.71700 979.84230 1023.57049 1183.37898    30
 frank2(DAT2)  88.68229  93.40476 118.27959 107.69190  121.60257  346.48264    30
   alex(DAT3)  98.56861 109.36653 131.21195 131.20760  149.99347  183.43918    30
  alex2(DAT4)  26.14104  26.45840  30.79294  26.67951   31.24136   50.66723    30
like image 199
Frank Avatar answered Oct 24 '22 05:10

Frank


Another idea -similar to Frank's- that tries (1) to avoid subsetting 'data.table' rows (which I assume must have some cost) and (2) to avoid checking a length == nrow(dat) vector for NAs in every iteration.

alex = function(x, ans = rep_len(NA, length(x[[1L]])), wh = seq_len(length(x[[1L]])))
{
    if(!length(wh)) return(ans)
    ans[wh] = as.character(x[[length(x)]])[wh]
    Recall(x[-length(x)], ans, wh[is.na(ans[wh])])
}   
alex(as.list(dat)) #had some trouble with 'data.table' subsetting
# [1] "u" "q" "w" "h" "r" "t" "e" "t"

And to compare with Frank's:

frank = function(x)
{
    x[, res := NA_character_]
    for(v in rev(names(x))[-1]) x[is.na(res), res := get(v)]
    return(x$res)       
}

DAT1 = as.data.table(lapply(ceiling(seq(0, 1e4, length.out = 1e2)), 
                     function(n) c(rep(NA, n), sample(letters, 3e5 - n, TRUE))))
DAT2 = copy(DAT1)
microbenchmark::microbenchmark(alex(as.list(DAT1)), 
                               { frank(DAT2); DAT2[, res := NULL] }, 
                               times = 30)
#Unit: milliseconds
#                                            expr       min        lq    median        uq       max neval
#                             alex(as.list(DAT1))  102.9767  108.5134  117.6595  133.1849  166.9594    30
# {     frank(DAT2)     DAT2[, `:=`(res, NULL)] } 1413.3296 1455.1553 1497.3517 1540.8705 1685.0589    30
identical(alex(as.list(DAT1)), frank(DAT2))
#[1] TRUE
like image 35
alexis_laz Avatar answered Oct 24 '22 05:10

alexis_laz


Here is a one liner base R approach:

sapply(split(dat, seq(nrow(dat))), function(x) tail(x[!is.na(x)],1))
#  1   2   3   4   5   6   7   8 
#"u" "q" "w" "h" "r" "t" "e" "t" 
like image 36
Colonel Beauvel Avatar answered Oct 24 '22 06:10

Colonel Beauvel