I have a 2-d numpy array as follows:
a = np.array([[1,5,9,13],
[2,6,10,14],
[3,7,11,15],
[4,8,12,16]]
I want to extract it into patches of 2 by 2 sizes with out repeating the elements.
The answer should exactly be the same. This can be 3-d array or list with the same order of elements as below:
[[[1,5],
[2,6]],
[[3,7],
[4,8]],
[[9,13],
[10,14]],
[[11,15],
[12,16]]]
How can do it easily?
In my real problem the size of a is (36, 72). I can not do it one by one. I want programmatic way of doing it.
Using the logical_and() method The logical_and() method from the numpy package accepts multiple conditions or expressions as a parameter. Each of the conditions or the expressions should return a boolean value. These boolean values are used to extract the required elements from the array.
To unpack elements of a uint8 array into a binary-valued output array, use the numpy. unpackbits() method in Python Numpy. The result is binary-valued (0 or 1). The axis is the dimension over which bit-unpacking is done.
__array_interface__ A dictionary of items (3 required and 5 optional). The optional keys in the dictionary have implied defaults if they are not provided. The keys are: shape (required) Tuple whose elements are the array size in each dimension.
Using scikit-image:
import numpy as np
from skimage.util import view_as_blocks
a = np.array([[1,5,9,13],
[2,6,10,14],
[3,7,11,15],
[4,8,12,16]])
print(view_as_blocks(a, (2, 2)))
You can achieve it with a combination of np.reshape
and np.swapaxes
like so -
def extract_blocks(a, blocksize, keep_as_view=False):
M,N = a.shape
b0, b1 = blocksize
if keep_as_view==0:
return a.reshape(M//b0,b0,N//b1,b1).swapaxes(1,2).reshape(-1,b0,b1)
else:
return a.reshape(M//b0,b0,N//b1,b1).swapaxes(1,2)
As can be seen there are two ways to use it - With keep_as_view
flag turned off (default one) or on. With keep_as_view = False
, we are reshaping the swapped-axes to a final output of 3D
, while with keep_as_view = True
, we will keep it 4D and that will be a view into the input array and hence, virtually free on runtime. We will verify it with a sample case run later on.
Sample cases
Let's use a sample input array, like so -
In [94]: a
Out[94]:
array([[2, 2, 6, 1, 3, 6],
[1, 0, 1, 0, 0, 3],
[4, 0, 0, 4, 1, 7],
[3, 2, 4, 7, 2, 4],
[8, 0, 7, 3, 4, 6],
[1, 5, 6, 2, 1, 8]])
Now, let's use some block-sizes for testing. Let's use a blocksize of (2,3)
with the view-flag turned off and on -
In [95]: extract_blocks(a, (2,3)) # Blocksize : (2,3)
Out[95]:
array([[[2, 2, 6],
[1, 0, 1]],
[[1, 3, 6],
[0, 0, 3]],
[[4, 0, 0],
[3, 2, 4]],
[[4, 1, 7],
[7, 2, 4]],
[[8, 0, 7],
[1, 5, 6]],
[[3, 4, 6],
[2, 1, 8]]])
In [48]: extract_blocks(a, (2,3), keep_as_view=True)
Out[48]:
array([[[[2, 2, 6],
[1, 0, 1]],
[[1, 3, 6],
[0, 0, 3]]],
[[[4, 0, 0],
[3, 2, 4]],
[[4, 1, 7],
[7, 2, 4]]],
[[[8, 0, 7],
[1, 5, 6]],
[[3, 4, 6],
[2, 1, 8]]]])
Verify view
with keep_as_view=True
In [20]: np.shares_memory(a, extract_blocks(a, (2,3), keep_as_view=True))
Out[20]: True
Let's check out performance on a large array and verify the virtually free runtime claim as discussed earlier -
In [42]: a = np.random.rand(2000,3000)
In [43]: %timeit extract_blocks(a, (2,3), keep_as_view=True)
1000000 loops, best of 3: 801 ns per loop
In [44]: %timeit extract_blocks(a, (2,3), keep_as_view=False)
10 loops, best of 3: 29.1 ms per loop
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With