Hi Anyone able to help advise? I have an issue trying to export the data being populated from data table filtered from drop down selection upon clicking on download link to a CSV file.
Error gotten after clicking on the Download Link
csv_string = dff.to_csv(index=False, encoding='utf-8')
AttributeError: 'str' object has no attribute 'to_csv'
And the file that was downloaded is a file containing html code.
enter image description here
Code snippets below
import dash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output,State
import plotly.graph_objs as go
import dash_table
import dash_table_experiments as dt
from urllib.parse import quote
import flask
import pandas as pd
import numpy as np
import pyodbc
app.layout = html.Div([
html.H3("Sales Summary Report"),
dcc.Graph(
figure={
"data": [
{
"x": df["Sales_RANGE"],
"y": df['count'],
"name":'No of Cust',
"type": "bar",
"marker":{'color':'rgba(26, 118, 255, 0.5)',
#'line':{
# 'color':'rgb(8,48,107)',
# 'width':1.5,
# }
}
}
],
"layout": {
"xaxis": {"automargin": True},
"yaxis": {
"automargin": True,
# "title": {"text": column}
},
"height": 250,
"margin": {"t": 10, "l": 10, "r": 10},
},
},
)
,
html.Label(["Select Sales range to view",
dcc.Dropdown(
id="SalesRange",
style={'height': '30px', 'width': '55%'},
options=[{'label': i,
'value': i
} for i in Sales_Range_Options],
value='All'
)
]),
#TABLE
html.H5("Details"),
html.Div(id='detailsresults') ,
html.A('Download Data',
id='download-link',
download="rawdata.csv",
href="",
target="_blank"
)
])
def generate_table(dataframe):
'''Given dataframe, return template generated using Dash components
'''
return html.Div( [dash_table.DataTable(
#id='match-results',
data=dataframe.to_dict('records'),
columns=[{"name": i, "id": i} for i in dataframe.columns],
editable=False
),
html.Hr()
])
@app.callback(
Output('detailsresults', 'children'),
[
Input('SalesRange', 'value'),
]
)
def load_results(SalesRange):
if SalesRange== 'All':
return generate_table(df)
else:
results = df[df['SALES_RANGE'] == SalesRange]
return generate_table(results)
@app.callback(
dash.dependencies.Output('download-link', 'href'),
[dash.dependencies.Input('SalesRange', 'value')])
def update_download_link(SalesRange):
dff = load_results(SalesRange)
csv_string = dff.to_csv(index=False, encoding='utf-8')
csv_string = "data:text/csv;charset=utf-8,%EF%BB%BF" + quote(csv_string)
return csv_string
Download | Dash for Python Documentation | Plotly dcc.Download With the dcc.Downloadcomponent, you can allow users to directly download files from your app. These files include (but are not limited to) spreadsheets, images, text files, etc. dcc.Downloadopens a download dialog when the dataproperty changes.
CSV export is officially supported by dash_table.DataTable. You simply need to specify export_format='csv' when you build the table: dash_table.DataTable ( id="table", columns= [ {"name": i, "id": i} for i in df.columns], data=df.to_dict ("records"), export_format="csv", )
Plotly figures are interactive when viewed in a web browser: you can hover over data points, pan and zoom axes, and show and hide traces by clicking or double-clicking on the legend. You can export figures either to static image file formats like PNG, JPEG, SVG or PDF or you can export them to HTML files which can be opened in a browser.
Exporting the filtered data table requires a callback. Since the data exported should match the data displayed in the data table, simply reuse the data table callback and make a few adjustments. The bold text is what was changed from the copied callback. Change the output value, the function name, and return the csv file using pandas and urllib.
CSV export is officially supported by dash_table.DataTable
. You simply need to specify export_format='csv'
when you build the table:
dash_table.DataTable(
id="table",
columns=[{"name": i, "id": i} for i in df.columns],
data=df.to_dict("records"),
export_format="csv",
)
Here's a complete example app.py
that you can run:
import dash
import dash_table
import dash_html_components as html
import pandas as pd
df = pd.DataFrame(
[
["California", 289, 4395, 15.3, 10826],
["Arizona", 48, 1078, 22.5, 2550],
["Nevada", 11, 238, 21.6, 557],
["New Mexico", 33, 261, 7.9, 590],
["Colorado", 20, 118, 5.9, 235],
],
columns=["State", "# Solar Plants", "MW", "Mean MW/Plant", "GWh"],
)
app = dash.Dash(__name__)
server = app.server
app.layout = dash_table.DataTable(
id="table",
columns=[{"name": i, "id": i} for i in df.columns],
data=df.to_dict("records"),
export_format="csv",
)
if __name__ == "__main__":
app.run_server(debug=True)
You will see a button above the table:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With