I have been trying to explain the difference between switch statements and pattern matching(F#) to a couple of people but I haven't really been able to explain it well..most of the time they just look at me and say "so why don't you just use if..then..else".
How would you explain it to them?
EDIT! Thanks everyone for the great answers, I really wish I could mark multiple right answers.
Pattern Matching works by "reading" through text strings to match patterns that are defined using Pattern Matching Expressions, also known as Regular Expressions. Pattern Matching can be used in Identification as well as in Pre-Classification Processing, Page Processing, or Storage Processing.
Pattern matching in computer science is the checking and locating of specific sequences of data of some pattern among raw data or a sequence of tokens. Unlike pattern recognition, the match has to be exact in the case of pattern matching.
Pattern matching is used to determine whether source files of high-level languages are syntactically correct. It is also used to find and replace a matching pattern in a text or code with another text/code. Any application that supports search functionality uses pattern matching in one way or another.
It turned out that pattern matching in their example was significantly faster than if-else tests. Even though the code doesn't utilize any special pattern match cases that would not be possible with if-else tests, it just compares integers.
Having formerly been one of "those people", I don't know that there's a succinct way to sum up why pattern-matching is such tasty goodness. It's experiential.
Back when I had just glanced at pattern-matching and thought it was a glorified switch statement, I think that I didn't have experience programming with algebraic data types (tuples and discriminated unions) and didn't quite see that pattern matching was both a control construct and a binding construct. Now that I've been programming with F#, I finally "get it". Pattern-matching's coolness is due to a confluence of features found in functional programming languages, and so it's non-trivial for the outsider-looking-in to appreciate.
I tried to sum up one aspect of why pattern-matching is useful in the second of a short two-part blog series on language and API design; check out part one and part two.
Patterns give you a small language to describe the structure of the values you want to match. The structure can be arbitrarily deep and you can bind variables to parts of the structured value.
This allows you to write things extremely succinctly. You can illustrate this with a small example, such as a derivative function for a simple type of mathematical expressions:
type expr = | Int of int | Var of string | Add of expr * expr | Mul of expr * expr;; let rec d(f, x) = match f with | Var y when x=y -> Int 1 | Int _ | Var _ -> Int 0 | Add(f, g) -> Add(d(f, x), d(g, x)) | Mul(f, g) -> Add(Mul(f, d(g, x)), Mul(g, d(f, x)));;
Additionally, because pattern matching is a static construct for static types, the compiler can (i) verify that you covered all cases (ii) detect redundant branches that can never match any value (iii) provide a very efficient implementation (with jumps etc.).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With