It is well-known that monoids are stunningly ubiquitous in programing. They are so ubiquitous and so useful that I, as a 'hobby project', am working on a system that is completely based on their properties (distributed data aggregation). To make the system useful I need useful monoids :)
I already know of these:
Now, let us define a quasi-property of an operation as a property that holds up to an equivalence relation. For example, list concatenation is quasi-commutative if we consider lists of equal length or with identical contents up to permutation to be equivalent.
Here are some quasi-monoids and quasi-commutative monoids and semigroups:
Which others do exist?
In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0.
A semigroup may have one or more left identities but no right identity, and vice versa. A two-sided identity (or just identity) is an element that is both a left and right identity. Semigroups with a two-sided identity are called monoids. A semigroup may have at most one two-sided identity.
The term Monoid comes from category theory. It describes a set of elements which has 3 special properties when combined with a particular operation, often named concat : The operation must combine two values of the set into a third value of the same set.
Semigroups can be used in biology to describe certain aspects in the crossing of organisms , in genetics and in consideration of metabolisms. The growth of plants can be described algebraically in Hermann and Rosenberg (1975). Further material on this subject is contained in Holcombe (1982).
Quotient monoid is another way to form monoids (quasimonoids?): given monoid M and an equivalence relation ~ compatible with multiplication, it gives another monoid. For example:
finite multisets with union: if A* is a free monoid (lists with concatenation), ~ is "is a permutation of" relation, then A*/~ is a free commutative monoid.
finite sets with union: If ~ is modified to disregard count of elements (so "aa" ~ "a") then A*/~ is a free commutative idempotent monoid.
syntactic monoid: Any regular language gives rise to syntactic monoid that is quotient of A* by "indistinguishability by language" relation. Here is a finger tree implementation of this idea. For example, the language {a3n:n natural} has Z3 as the syntactic monoid.
Quotient monoids automatically come with homomorphism M -> M/~ that is surjective.
A "dual" construction are submonoids. They come with homomorphism A -> M that is injective.
Yet another construction on monoids is tensor product.
Monoids allow exponentation by squaring in O(log n) and fast parallel prefix sums computation. Also they are used in Writer monad.
The Haskell standard library is alternately praised and attacked for its use of the actual mathematical terms for its type classes. (In my opinion it's a good thing, since without it I'd never even know what a monoid is!). In any case, you might check out http://www.haskell.org/ghc/docs/latest/html/libraries/base/Data-Monoid.html for a few more examples:
first (Just a) b = Just a first Nothing b = band likewise for last
The latter is just the tip of the iceberg of a whole family of monoids related to monads and arrows, but I can't really wrap my head around these (other than simply monadic endomorphisms). But a google search on monads monoids
turns up quite a bit.
A really useful example of a commutative monoid is unification in logic and constraint languages. See section 2.8.2.2 of 'Concepts, Techniques and Models of Computer Programming' for a precise definition of a possible unification algorithm.
Good luck with your language! I'm doing something similar with a parallel language, using monoids to merge subresults from parallel computations.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With