Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Examples of Algorithms which has O(1), O(n log n) and O(log n) complexities

People also ask

Which algorithm has log n time complexity?

A common algorithm with O(log n) time complexity is Binary Search whose recursive relation is T(n/2) + O(1) i.e. at every subsequent level of the tree you divide problem into half and do constant amount of additional work.

What is O 1 time complexity example?

O(1) — Constant Time Constant time algorithms will always take same amount of time to be executed. The execution time of these algorithm is independent of the size of the input. A good example of O(1) time is accessing a value with an array index. Other examples include: push() and pop() operations on an array.

What is algorithm complexity with example?

When we analyse an algorithm, we use a notation to represent its time complexity and that notation is Big O notation. For Example: time complexity for Linear search can be represented as O(n) and O(log n) for Binary search (where, n and log(n) are the number of operations).

What is O n log n time complexity?

O(nlogn) is known as loglinear complexity. O(nlogn) implies that logn operations will occur n times. O(nlogn) time is common in recursive sorting algorithms, sorting algorithms using a binary tree sort and most other types of sorts.


If you want examples of Algorithms/Group of Statements with Time complexity as given in the question, here is a small list -

O(1) time

  • Accessing Array Index (int a = ARR[5];)
  • Inserting a node in Linked List
  • Pushing and Poping on Stack
  • Insertion and Removal from Queue
  • Finding out the parent or left/right child of a node in a tree stored in Array
  • Jumping to Next/Previous element in Doubly Linked List

O(n) time

In a nutshell, all Brute Force Algorithms, or Noob ones which require linearity, are based on O(n) time complexity

  • Traversing an array
  • Traversing a linked list
  • Linear Search
  • Deletion of a specific element in a Linked List (Not sorted)
  • Comparing two strings
  • Checking for Palindrome
  • Counting/Bucket Sort and here too you can find a million more such examples....

O(log n) time

  • Binary Search
  • Finding largest/smallest number in a binary search tree
  • Certain Divide and Conquer Algorithms based on Linear functionality
  • Calculating Fibonacci Numbers - Best Method The basic premise here is NOT using the complete data, and reducing the problem size with every iteration

O(n log n) time

The factor of 'log n' is introduced by bringing into consideration Divide and Conquer. Some of these algorithms are the best optimized ones and used frequently.

  • Merge Sort
  • Heap Sort
  • Quick Sort
  • Certain Divide and Conquer Algorithms based on optimizing O(n^2) algorithms

O(n^2) time

These ones are supposed to be the less efficient algorithms if their O(nlogn) counterparts are present. The general application may be Brute Force here.

  • Bubble Sort
  • Insertion Sort
  • Selection Sort
  • Traversing a simple 2D array

O(1) - most cooking procedures are O(1), that is, it takes a constant amount of time even if there are more people to cook for (to a degree, because you could run out of space in your pot/pans and need to split up the cooking)

O(logn) - finding something in your telephone book. Think binary search.

O(n) - reading a book, where n is the number of pages. It is the minimum amount of time it takes to read a book.

O(nlogn) - cant immediately think of something one might do everyday that is nlogn...unless you sort cards by doing merge or quick sort!


A simple example of O(1) might be return 23; -- whatever the input, this will return in a fixed, finite time.

A typical example of O(N log N) would be sorting an input array with a good algorithm (e.g. mergesort).

A typical example if O(log N) would be looking up a value in a sorted input array by bisection.


I can offer you some general algorithms...

  • O(1): Accessing an element in an array (i.e. int i = a[9])
  • O(n log n): quick or mergesort (On average)
  • O(log n): Binary search

These would be the gut responses as this sounds like homework/interview kind of question. If you are looking for something more concrete it's a little harder as the public in general would have no idea of the underlying implementation (Sparing open source of course) of a popular application, nor does the concept in general apply to an "application"


O(1): finding the best next move in Chess (or Go for that matter). As the number of game states is finite it's only O(1) :-)