I am trying to understand lambda functions (i.e. anonymous functions) in Haskell by writing a few simple functions that use them.
In the following example, I am simply trying to take in 3 parameters and add two of the three using an anonymous function and adding the third parameter after that. I am getting an error saying that I must declare an instance first.
specialAdd x y z = (\x y -> x + y) + z
I appreciate any explanation of why my example is not working and/or any explanation that would help me better understand lambda functions.
specialAdd x y z = (\x y -> x + y) + z
In this example, what you are trying to do is add a function to a number, which is not going to work. Look at (\x y -> x + y) + z
: it has the form a + b
. In order for such an expression to work, the a
part and the b
part must be numbers of the same type.
Haskell is a bit of an unusual language, so its error messages are rarely of the form "you can't do that". So what's going on here is that Haskell sees that (\x y -> x + y)
is a function, and since in an expression like a + b
, b
must be the same type as a
, it concludes that b
must also be a function. Haskell also allows you to define your own rules for adding non-built-in types; so it can't just give you an error saying "you can't add two functions," but instead the error is "you have not defined a rule that allows me to add two functions."
The following would do what you want:
specialAdd x y z = ((\x y -> x + y) x y) + z
Here you are applying the function (\x y -> x + y)
to arguments x
and y
, then adding the result to z
.
A good way to practice anonymous function is to use them with high order function as fold or map.
Using map as an entry point,
Basic definition of map,
map f [] = []
map f (x:xs) = f x : f xs
Built up an example,
>>> let list = [0..4]
>>> let f x = x + 1
Applying map we obtain,
>>> map f list
[1,2,3,4,5]
Now, we can omit the declaration of f and replace it using anonymous function,
>>> map (\x->x+1) list
[1,2,3,4,5]
then we deduce, map f list == map (\x->x+1) list, thus
f = \x-> x + 1 --- The same as f x = x + 1, but this is the equivalent lambda notation.
then starting with a simple function we see how to translate it into an anonymous function and then how an anonymous function can be rely to a lambda abstraction.
As an exercise try to translate f x = 2*x.
Now more complex, an anonymous function which take two arguments,
Again an working example,
>>> let add x y = x + y
>>> foldl' add 0 [0..4]
10
Can be rewrite using anonymous function as,
>>> foldl' (\x y -> x + y) 0 [0..4]
Again using equality we deduce that add = \x y -> x + y
Moreover as in hakell all function are function of one argument, and we can partial apply it, we can rewrite our previous anonymous function as, add = \x -> (\y -> x + y).
Then where is the trick ?? Because, I just show the use of anonymous function into high order one, and starting from that, showing how this can be exploited to rewrite function using lambda notation. I mean how can it help you to learn how to write down anonymous function ?
Simply cause I've give you (show you) an existing framework using high order function.
This framework is a huge opportunity to accommodate you with this notation.
Starting from that an infinity range of exercise can be deduce, for example try to do the following.
A - Find the corresponding anonymous function ?
1 - let f (x,y) = x + y in map f [(0,1),(2,3),(-1,1)]
2 - let f x y = x * y in foldl' f 1 [1..5]
B - Rewrite all of them using lambda notation into a declarative form (f = \x-> (\y-> ...)
And so on ....
To summarize,
A function as
(F0) f x1 x2 ... xn = {BODY of f}
can always be rewrite as,
(F1) f = \x1 x2 ... xn -> {BODY of f}
where
(F2) (\x1 x2 ... xn -> {BODY of f})
F2 form are just anonymous function, a pure translation of the function into lambda calculus form. F1 is a declarative lambda notation (because we declare f, as we define it, binding it to the anonymous F2). F0 being the usual notation of Haskeller.
A last note focusing on the fact we can put parenthesis between the argument, this create a closure. Doing that mean that a subset of the function's code can be fully evaluated using a subset of the function's argument, (mean converting to a form where no more free variable occurs), but that's another story.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With