I'm following this tutorial to make this ML prediction:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import style
style.use("ggplot")
from sklearn import svm
x = [1, 5, 1.5, 8, 1, 9]
y = [2, 8, 1.8, 8, 0.6, 11]
plt.scatter(x,y)
plt.show()
X = np.array([[1,2],
[5,8],
[1.5,1.8],
[8,8],
[1,0.6],
[9,11]])
y = [0,1,0,1,0,1]
X.reshape(1, -1)
clf = svm.SVC(kernel='linear', C = 1.0)
clf.fit(X,y)
print(clf.predict([0.58,0.76]))
I'm using Python 3.6 and I get error "Expected 2D array, got 1D array instead:" I think the script is for older versions, but I don't know how to convert it to the 3.6 version.
Already try with the:
X.reshape(1, -1)
Use reshape() Function to Transform 1d Array to 2d Array The number of components within every dimension defines the form of the array. We may add or delete parameters or adjust the number of items within every dimension by using reshaping. To modify the layout of a NumPy ndarray, we will be using the reshape() method.
The 1D function type, IFunction1D is the simplest function type. It takes a 1D set of x values and requires the function values to be returned at those points as a numpy array.
You are just supposed to provide the predict
method with the same 2D array, but with one value that you want to process (or more). In short, you can just replace
[0.58,0.76]
With
[[0.58,0.76]]
And it should work.
EDIT: This answer became popular so I thought I'd add a little more explanation about ML. The short version: we can only use predict
on data that is of the same dimensionality as the training data (X
) was.
In the example in question, we give the computer a bunch of rows in X
(with 2 values each) and we show it the correct responses in y
. When we want to predict
using new values, our program expects the same - a bunch of rows. Even if we want to do it to just one row (with two values), that row has to be part of another array.
The problem is occurring when you run prediction on the array [0.58,0.76]
. Fix the problem by reshaping it before you call predict()
:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import style
style.use("ggplot")
from sklearn import svm
x = [1, 5, 1.5, 8, 1, 9]
y = [2, 8, 1.8, 8, 0.6, 11]
plt.scatter(x,y)
plt.show()
X = np.array([[1,2],
[5,8],
[1.5,1.8],
[8,8],
[1,0.6],
[9,11]])
y = [0,1,0,1,0,1]
clf = svm.SVC(kernel='linear', C = 1.0)
clf.fit(X,y)
test = np.array([0.58, 0.76])
print test # Produces: [ 0.58 0.76]
print test.shape # Produces: (2,) meaning 2 rows, 1 col
test = test.reshape(1, -1)
print test # Produces: [[ 0.58 0.76]]
print test.shape # Produces (1, 2) meaning 1 row, 2 cols
print(clf.predict(test)) # Produces [0], as expected
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With