I'm changing my TensorFlow code from the old queue interface to the new Dataset API. In my old code I kept track of the epoch count by incrementing a tf.Variable
every time a new input tensor is accessed and processed in the queue. I'd like to have this epoch count with the new Dataset API, but I'm having some trouble making it work.
Since I'm producing a variable amount of data items in the pre-processing stage, it is not a simple matter of incrementing a (Python) counter in the training loop - I need to compute the epoch count with respect to the input of the queues or Dataset.
I mimicked what I had before with the old queue system, and here is what I ended up with for the Dataset API (simplified example):
with tf.Graph().as_default():
data = tf.ones(shape=(10, 512), dtype=tf.float32, name="data")
input_tensors = (data,)
epoch_counter = tf.Variable(initial_value=0.0, dtype=tf.float32,
trainable=False)
def pre_processing_func(data_):
data_size = tf.constant(0.1, dtype=tf.float32)
epoch_counter_op = tf.assign_add(epoch_counter, data_size)
with tf.control_dependencies([epoch_counter_op]):
# normally I would do data-augmentation here
results = (tf.expand_dims(data_, axis=0),)
return tf.data.Dataset.from_tensor_slices(results)
dataset_source = tf.data.Dataset.from_tensor_slices(input_tensors)
dataset = dataset_source.flat_map(pre_processing_func)
dataset = dataset.repeat()
# ... do something with 'dataset' and print
# the value of 'epoch_counter' every once a while
However, this doesn't work. It crashes with a cryptic error message:
TypeError: In op 'AssignAdd', input types ([tf.float32, tf.float32])
are not compatible with expected types ([tf.float32_ref, tf.float32])
Closer inspection shows that the epoch_counter
variable might not be accessible within the pre_processing_func
at all. Does it live in a different graph perhaps?
Any idea how to fix the above example? Or how to get the epoch counter (with decimal points, e.g. 0.4 or 2.9) through some other means?
TL;DR: Replace the definition of epoch_counter
with the following:
epoch_counter = tf.get_variable("epoch_counter", initializer=0.0,
trainable=False, use_resource=True)
There are some limitations around using TensorFlow variables inside tf.data.Dataset
transformations. The principle limitation is that all variables must be "resource variables" and not the older "reference variables"; unfortunately tf.Variable
still creates "reference variables" for backwards compatibility reasons.
Generally speaking, I wouldn't recommend using variables in a tf.data
pipeline if it's possible to avoid it. For example, you might be able to use Dataset.range()
to define an epoch counter, and then do something like:
epoch_counter = tf.data.Dataset.range(NUM_EPOCHS)
dataset = epoch_counter.flat_map(lambda i: tf.data.Dataset.zip(
(pre_processing_func(data), tf.data.Dataset.from_tensors(i).repeat()))
The above snippet attaches an epoch counter to every value as a second component.
To add to @mrry's great answer, if you want to stay within the tf.data
pipeline and also want to track the iteration within each epoch you can try my solution below. If you have non-unit batch size I guess you would have to add the line data = data.batch(bs)
.
import tensorflow as tf
import itertools
def step_counter():
for i in itertools.count(): yield i
num_examples = 3
num_epochs = 2
num_iters = num_examples * num_epochs
features = tf.data.Dataset.range(num_examples)
labels = tf.data.Dataset.range(num_examples)
data = tf.data.Dataset.zip((features, labels))
data = data.shuffle(num_examples)
step = tf.data.Dataset.from_generator(step_counter, tf.int32)
data = tf.data.Dataset.zip((data, step))
epoch = tf.data.Dataset.range(num_epochs)
data = epoch.flat_map(
lambda i: tf.data.Dataset.zip(
(data, tf.data.Dataset.from_tensors(i).repeat())))
data = data.repeat(num_epochs)
it = data.make_one_shot_iterator()
example = it.get_next()
with tf.Session() as sess:
for _ in range(num_iters):
((x, y), st), ep = sess.run(example)
print(f'step {st} \t epoch {ep} \t x {x} \t y {y}')
Prints:
step 0 epoch 0 x 2 y 2
step 1 epoch 0 x 0 y 0
step 2 epoch 0 x 1 y 1
step 0 epoch 1 x 2 y 2
step 1 epoch 1 x 0 y 0
step 2 epoch 1 x 1 y 1
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With