Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Efficiently sorting a numpy array in descending order?

People also ask

How do I sort an array in descending order NumPy?

Sort NumPy Array in decreasing order using sort() arranges all the elements in increasing order. In order to sort a NumPy Array in descending order, we will pass the given array to the sort() method and it will return the sorted array in ascending order. Then we will reverse the array using slicing.

How do you sort an array in descending order in python?

sort() method sorts the elements of a list in ascending or descending order using the default < comparisons operator between items. Use the key parameter to pass the function name to be used for comparison instead of the default < operator. Set the reverse parameter to True, to get the list in descending order.

How do you sort an array in descending order?

To sort an array in Java in descending order, you have to use the reverseOrder() method from the Collections class. The reverseOrder() method does not parse the array. Instead, it will merely reverse the natural ordering of the array.


temp[::-1].sort() sorts the array in place, whereas np.sort(temp)[::-1] creates a new array.

In [25]: temp = np.random.randint(1,10, 10)

In [26]: temp
Out[26]: array([5, 2, 7, 4, 4, 2, 8, 6, 4, 4])

In [27]: id(temp)
Out[27]: 139962713524944

In [28]: temp[::-1].sort()

In [29]: temp
Out[29]: array([8, 7, 6, 5, 4, 4, 4, 4, 2, 2])

In [30]: id(temp)
Out[30]: 139962713524944

>>> a=np.array([5, 2, 7, 4, 4, 2, 8, 6, 4, 4])

>>> np.sort(a)
array([2, 2, 4, 4, 4, 4, 5, 6, 7, 8])

>>> -np.sort(-a)
array([8, 7, 6, 5, 4, 4, 4, 4, 2, 2])

For short arrays I suggest using np.argsort() by finding the indices of the sorted negatived array, which is slightly faster than reversing the sorted array:

In [37]: temp = np.random.randint(1,10, 10)

In [38]: %timeit np.sort(temp)[::-1]
100000 loops, best of 3: 4.65 µs per loop

In [39]: %timeit temp[np.argsort(-temp)]
100000 loops, best of 3: 3.91 µs per loop

Be careful with dimensions.

Let

x  # initial numpy array
I = np.argsort(x) or I = x.argsort() 
y = np.sort(x)    or y = x.sort()
z  # reverse sorted array

Full Reverse

z = x[I[::-1]]
z = -np.sort(-x)
z = np.flip(y)
  • flip changed in 1.15, previous versions 1.14 required axis. Solution: pip install --upgrade numpy.

First Dimension Reversed

z = y[::-1]
z = np.flipud(y)
z = np.flip(y, axis=0)

Second Dimension Reversed

z = y[::-1, :]
z = np.fliplr(y)
z = np.flip(y, axis=1)

Testing

Testing on a 100×10×10 array 1000 times.

Method       | Time (ms)
-------------+----------
y[::-1]      | 0.126659  # only in first dimension
-np.sort(-x) | 0.133152
np.flip(y)   | 0.121711
x[I[::-1]]   | 4.611778

x.sort()     | 0.024961
x.argsort()  | 0.041830
np.flip(x)   | 0.002026

This is mainly due to reindexing rather than argsort.

# Timing code
import time
import numpy as np


def timeit(fun, xs):
    t = time.time()
    for i in range(len(xs)):  # inline and map gave much worse results for x[-I], 5*t
        fun(xs[i])
    t = time.time() - t
    print(np.round(t,6))

I, N = 1000, (100, 10, 10)
xs = np.random.rand(I,*N)
timeit(lambda x: np.sort(x)[::-1], xs)
timeit(lambda x: -np.sort(-x), xs)
timeit(lambda x: np.flip(x.sort()), xs)
timeit(lambda x: x[x.argsort()[::-1]], xs)
timeit(lambda x: x.sort(), xs)
timeit(lambda x: x.argsort(), xs)
timeit(lambda x: np.flip(x), xs)

Unfortunately when you have a complex array, only np.sort(temp)[::-1] works properly. The two other methods mentioned here are not effective.


Hello I was searching for a solution to reverse sorting a two dimensional numpy array, and I couldn't find anything that worked, but I think I have stumbled on a solution which I am uploading just in case anyone is in the same boat.

x=np.sort(array)
y=np.fliplr(x)

np.sort sorts ascending which is not what you want, but the command fliplr flips the rows left to right! Seems to work!

Hope it helps you out!

I guess it's similar to the suggest about -np.sort(-a) above but I was put off going for that by comment that it doesn't always work. Perhaps my solution won't always work either however I have tested it with a few arrays and seems to be OK.