Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Efficiently count word frequencies in python

I'd like to count frequencies of all words in a text file.

>>> countInFile('test.txt') 

should return {'aaa':1, 'bbb': 2, 'ccc':1} if the target text file is like:

# test.txt aaa bbb ccc bbb 

I've implemented it with pure python following some posts. However, I've found out pure-python ways are insufficient due to huge file size (> 1GB).

I think borrowing sklearn's power is a candidate.

If you let CountVectorizer count frequencies for each line, I guess you will get word frequencies by summing up each column. But, it sounds a bit indirect way.

What is the most efficient and straightforward way to count words in a file with python?

Update

My (very slow) code is here:

from collections import Counter  def get_term_frequency_in_file(source_file_path):     wordcount = {}     with open(source_file_path) as f:         for line in f:             line = line.lower().translate(None, string.punctuation)             this_wordcount = Counter(line.split())             wordcount = add_merge_two_dict(wordcount, this_wordcount)     return wordcount  def add_merge_two_dict(x, y):     return { k: x.get(k, 0) + y.get(k, 0) for k in set(x) | set(y) } 
like image 814
Light Yagmi Avatar asked Mar 08 '16 01:03

Light Yagmi


People also ask

How do you count the frequency of a word in Python?

Use set() method to remove a duplicate and to give a set of unique words. Iterate over the set and use count function (i.e. string. count(newstring[iteration])) to find the frequency of word at each iteration.


2 Answers

The most succinct approach is to use the tools Python gives you.

from future_builtins import map  # Only on Python 2  from collections import Counter from itertools import chain  def countInFile(filename):     with open(filename) as f:         return Counter(chain.from_iterable(map(str.split, f))) 

That's it. map(str.split, f) is making a generator that returns lists of words from each line. Wrapping in chain.from_iterable converts that to a single generator that produces a word at a time. Counter takes an input iterable and counts all unique values in it. At the end, you return a dict-like object (a Counter) that stores all unique words and their counts, and during creation, you only store a line of data at a time and the total counts, not the whole file at once.

In theory, on Python 2.7 and 3.1, you might do slightly better looping over the chained results yourself and using a dict or collections.defaultdict(int) to count (because Counter is implemented in Python, which can make it slower in some cases), but letting Counter do the work is simpler and more self-documenting (I mean, the whole goal is counting, so use a Counter). Beyond that, on CPython (the reference interpreter) 3.2 and higher Counter has a C level accelerator for counting iterable inputs that will run faster than anything you could write in pure Python.

Update: You seem to want punctuation stripped and case-insensitivity, so here's a variant of my earlier code that does that:

from string import punctuation  def countInFile(filename):     with open(filename) as f:         linewords = (line.translate(None, punctuation).lower().split() for line in f)         return Counter(chain.from_iterable(linewords)) 

Your code runs much more slowly because it's creating and destroying many small Counter and set objects, rather than .update-ing a single Counter once per line (which, while slightly slower than what I gave in the updated code block, would be at least algorithmically similar in scaling factor).

like image 109
ShadowRanger Avatar answered Oct 01 '22 12:10

ShadowRanger


A memory efficient and accurate way is to make use of

  • CountVectorizer in scikit (for ngram extraction)
  • NLTK for word_tokenize
  • numpy matrix sum to collect the counts
  • collections.Counter for collecting the counts and vocabulary

An example:

import urllib.request from collections import Counter  import numpy as np   from nltk import word_tokenize from sklearn.feature_extraction.text import CountVectorizer  # Our sample textfile. url = 'https://raw.githubusercontent.com/Simdiva/DSL-Task/master/data/DSLCC-v2.0/test/test.txt' response = urllib.request.urlopen(url) data = response.read().decode('utf8')   # Note that `ngram_range=(1, 1)` means we want to extract Unigrams, i.e. tokens. ngram_vectorizer = CountVectorizer(analyzer='word', tokenizer=word_tokenize, ngram_range=(1, 1), min_df=1) # X matrix where the row represents sentences and column is our one-hot vector for each token in our vocabulary X = ngram_vectorizer.fit_transform(data.split('\n'))  # Vocabulary vocab = list(ngram_vectorizer.get_feature_names())  # Column-wise sum of the X matrix. # It's some crazy numpy syntax that looks horribly unpythonic # For details, see http://stackoverflow.com/questions/3337301/numpy-matrix-to-array # and http://stackoverflow.com/questions/13567345/how-to-calculate-the-sum-of-all-columns-of-a-2d-numpy-array-efficiently counts = X.sum(axis=0).A1  freq_distribution = Counter(dict(zip(vocab, counts))) print (freq_distribution.most_common(10)) 

[out]:

[(',', 32000),  ('.', 17783),  ('de', 11225),  ('a', 7197),  ('que', 5710),  ('la', 4732),  ('je', 4304),  ('se', 4013),  ('на', 3978),  ('na', 3834)] 

Essentially, you can also do this:

from collections import Counter import numpy as np  from nltk import word_tokenize from sklearn.feature_extraction.text import CountVectorizer  def freq_dist(data):     """     :param data: A string with sentences separated by '\n'     :type data: str     """     ngram_vectorizer = CountVectorizer(analyzer='word', tokenizer=word_tokenize, ngram_range=(1, 1), min_df=1)     X = ngram_vectorizer.fit_transform(data.split('\n'))     vocab = list(ngram_vectorizer.get_feature_names())     counts = X.sum(axis=0).A1     return Counter(dict(zip(vocab, counts))) 

Let's timeit:

import time  start = time.time() word_distribution = freq_dist(data) print (time.time() - start) 

[out]:

5.257147789001465 

Note that CountVectorizer can also take a file instead of a string and there's no need to read the whole file into memory. In code:

import io from collections import Counter  import numpy as np from sklearn.feature_extraction.text import CountVectorizer  infile = '/path/to/input.txt'  ngram_vectorizer = CountVectorizer(analyzer='word', ngram_range=(1, 1), min_df=1)  with io.open(infile, 'r', encoding='utf8') as fin:     X = ngram_vectorizer.fit_transform(fin)     vocab = ngram_vectorizer.get_feature_names()     counts = X.sum(axis=0).A1     freq_distribution = Counter(dict(zip(vocab, counts)))     print (freq_distribution.most_common(10)) 
like image 20
alvas Avatar answered Oct 01 '22 12:10

alvas