Given a
we first define two real-valued functions and as follows:
and we also define a value m(X)
for each matrix X
as follows:
Now given an , we have many regions of G
, denoted as . Here, a region of G
is formed by a submatrix of G
that is randomly chosen from some columns and some rows of G
. And our problem is to compute as fewer operations as possible. Is there any methods like building hash table, or sorting to get the results faster? Thanks!
========================
For example, if G={{1,2,3},{4,5,6},{7,8,9}}
, then
G_1 could be {{1,2},{7,8}}
G_2 could be {{1,3},{4,6},{7,9}}
G_3 could be {{5,6},{8,9}}
=======================
Currently, for each G_i
we need mxn comparisons to compute m(G_i)
. Thus, for m(G_1),...,m(G_r)
there should be rxmxn comparisons. However, I can notice that G_i
and G_j
maybe overlapped, so there would be some other approach that is more effective. Any attention would be highly appreciated!
Depending on how many times the min/max type data is needed, you could consider a matrix that holds min/max information in-between the matrix values, i.e. in the interstices between values.. Thus, for your example G={{1,2,3},{4,5,6},{7,8,9}} we would define a relationship matrix R sized ((mxn),(mxn),(mxn)) and having values from the set C = {-1 = less than, 0 = equals and 1 = greater than}.
R would have nine relationship pairs (n,1), (n,2) to (n,9) where each value would be a member of C. Note (n,n is defined and will equal 0). Thus, R[4,,) = (1,1,1,0,-1,-1,-1,-1,-1). Now consider any of your subsets G_1 ..., Knowing the positional relationships of a subset's members will give you offsets into R which will resolve to indexes into each R(N,,) which will return the desired relationship information directly without comparisons.
You, of course, will have to decide if the overhead in space and calculations to build R exceeds the cost of just computing what you need each time it's needed. Certain optimizations including realization that the R matrix is reflected along the major diagonal and that you could declare "equals" to be called, say, less than (meaning C has only two values) are available. Depending on the original matrix G, other optimizations can be had if it is know that a row or column is sorted.
And since some computers (mainframes, supercomputers, etc) store data into RAM in column-major order, store your dataset so that it fills in with the rows and columns transposed thus allowing column-to-column type operations (vector calculations) to actually favor the columns. Check your architecture.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With