Time limit per test: 5 seconds
Memory limit per test: 512 megabytesYou are given a string
s
of lengthn
(n
≤ 5000). You can select any proper prefix of this string that is also its suffix and remove either selected prefix or corresponding suffix. Then you can apply an analogous operation to a resulting string and so on. What is the minimum length of the final string, that can be achieved after applying the optimal sequence of such operations?Input
The first line of each test contains a strings
that consists of small English letters.Output
Output a single integer — the minimum length of the final string, that can be achieved after applying the optimal sequence of such operations.Examples
+-------+--------+----------------------------------+ | Input | Output | Explanation | +-------+--------+----------------------------------+ | caaca | 2 | caaca → ca|aca → aca → ac|a → ac | +-------+--------+----------------------------------+ | aabaa | 2 | aaba|a → a|aba → ab|a → ab | +-------+--------+----------------------------------+ | abc | 3 | No operations are possible | +-------+--------+----------------------------------+
Here is what I've managed to do so far:
Calculate the prefix function for all substrings of a given string in O(n^2)
Check the result of performing all the possible combinations of operations in O(n^3)
My solution passes all the tests at n
≤ 2000 but exceeds the time limit when 2000 < n
≤ 5000. Here is its code:
#include <iostream>
#include <string>
using namespace std;
const int MAX_N = 5000;
int result; // 1 less than actual
// [x][y] corresponds to substring that starts at position `x` and ends at position `x + y` =>
// => corresponding substring length is `y + 1`
int lps[MAX_N][MAX_N]; // prefix function for the substring s[x..x+y]
bool checked[MAX_N][MAX_N]; // whether substring s[x..x+y] is processed by check function
// length is 1 less than actual
void check(int start, int length) {
checked[start][length] = true;
if (length < result) {
if (length == 0) {
cout << 1; // actual length = length + 1 = 0 + 1 = 1
exit(0); // 1 is the minimum possible result
}
result = length;
}
// iteration over all proper prefixes that are also suffixes
// i - current prefix length
for (int i = lps[start][length]; i != 0; i = lps[start][i - 1]) {
int newLength = length - i;
int newStart = start + i;
if (!checked[start][newLength])
check(start, newLength);
if (!checked[newStart][newLength])
check(newStart, newLength);
}
}
int main()
{
string str;
cin >> str;
int n = str.length();
// lps calculation runs in O(n^2)
for (int l = 0; l < n; l++) {
int subLength = n - l;
lps[l][0] = 0;
checked[l][0] = false;
for (int i = 1; i < subLength; ++i) {
int j = lps[l][i - 1];
while (j > 0 && str[i + l] != str[j + l])
j = lps[l][j - 1];
if (str[i + l] == str[j + l]) j++;
lps[l][i] = j;
checked[l][i] = false;
}
}
result = n - 1;
// checking all possible operations combinations in O(n^3)
check(0, n - 1);
cout << result + 1;
}
Q: Is there any more efficient solution?
Use the str. removeprefix() and str. removesuffix() methods to remove the prefix and suffix from a string. The methods take the prefix and suffix as parameters and remove them from the string.
Use the str. removesuffix() method to remove the suffix from a string, e.g. without_suffix = my_str. removesuffix('@@@') . The removesuffix() method will return a new string with the specified suffix removed.
A suffix is a letter or group of letters added to the end of a word. Example: Suffix '-ly' is added to 'quick' to form 'quickly'. Given a query, string s , and a list of all possible words, return all words that have s as a suffix.
Example 1: Input: words = ["a","b","c","ab","bc","abc"], s = "abc" Output: 3 Explanation: The strings in words which are a prefix of s = "abc" are: "a", "ab", and "abc". Thus the number of strings in words which are a prefix of s is 3.
Here's one way to get the log factor. Let dp[i][j]
be true if we can reach the substring s[i..j]
. Then:
dp[0][length(s)-1] ->
true
dp[0][j] ->
if s[0] != s[j+1]:
false
else:
true if any dp[0][k]
for j < k ≤ (j + longestMatchRight[0][j+1])
(The longest match we can use is
also bound by the current range.)
(Initialise left side similarly.)
Now iterate from the outside in:
for i = 1 to length(s)-2:
for j = length(s)-2 to i:
dp[i][j] ->
// We removed on the right
if s[i] != s[j+1]:
false
else:
true if any dp[i][k]
for j < k ≤ (j + longestMatchRight[i][j+1])
// We removed on the left
if s[i-1] != s[j]:
true if dp[i][j]
else:
true if any dp[k][j]
for (i - longestMatchLeft[i-1][j]) ≤ k < i
We can precompute the longest match for each starting pair (i, j)
in O(n^2)
with the recurrence,
longest(i, j) ->
if s[i] == s[j]:
return 1 + longest(i + 1, j + 1)
else:
return 0
This would allow us to check for a substring match that starts at indexes i
and j
in O(1)
. (We need both right and left directions.)
We can think of a way to come up with a data structure that would allow us to determine if
any dp[i][k]
for j < k ≤ (j + longestMatchRight[i][j+1])
(And similarly for the left side.)
in O(log n)
, considering we have already seen those values.
Here's C++ code with segment trees (for right and left queries, so O(n^2 * log n)
) that includes Bananon's test generator. For 5000 "a" characters, it ran in 3.54s, 420 MB (https://ideone.com/EIrhnR). To reduce the memory, one of the segment trees is implemented on a single row (I still need to investigate doing the same with the left side queries to reduce memory even further.)
#include <iostream>
#include <string>
#include <ctime>
#include <random>
#include <algorithm> // std::min
using namespace std;
const int MAX_N = 5000;
int seg[2 * MAX_N];
int segsL[MAX_N][2 * MAX_N];
int m[MAX_N][MAX_N][2];
int dp[MAX_N][MAX_N];
int best;
// Adapted from https://codeforces.com/blog/entry/18051
void update(int n, int p, int value) { // set value at position p
for (seg[p += n] = value; p > 1; p >>= 1)
seg[p >> 1] = seg[p] + seg[p ^ 1];
}
// Adapted from https://codeforces.com/blog/entry/18051
int query(int n, int l, int r) { // sum on interval [l, r)
int res = 0;
for (l += n, r += n; l < r; l >>= 1, r >>= 1) {
if (l & 1) res += seg[l++];
if (r & 1) res += seg[--r];
}
return res;
}
// Adapted from https://codeforces.com/blog/entry/18051
void updateL(int n, int i, int p, int value) { // set value at position p
for (segsL[i][p += n] = value; p > 1; p >>= 1)
segsL[i][p >> 1] = segsL[i][p] + segsL[i][p ^ 1];
}
// Adapted from https://codeforces.com/blog/entry/18051
int queryL(int n, int i, int l, int r) { // sum on interval [l, r)
int res = 0;
for (l += n, r += n; l < r; l >>= 1, r >>= 1) {
if (l & 1) res += segsL[i][l++];
if (r & 1) res += segsL[i][--r];
}
return res;
}
// Code by גלעד ברקן
void precalc(int n, string & s) {
int i, j;
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
// [longest match left, longest match right]
m[i][j][0] = (s[i] == s[j]) & 1;
m[i][j][1] = (s[i] == s[j]) & 1;
}
}
for (i = n - 2; i >= 0; i--)
for (j = n - 2; j >= 0; j--)
m[i][j][1] = s[i] == s[j] ? 1 + m[i + 1][j + 1][1] : 0;
for (i = 1; i < n; i++)
for (j = 1; j < n; j++)
m[i][j][0] = s[i] == s[j] ? 1 + m[i - 1][j - 1][0] : 0;
}
// Code by גלעד ברקן
void f(int n, string & s) {
int i, j, k, longest;
dp[0][n - 1] = 1;
update(n, n - 1, 1);
updateL(n, n - 1, 0, 1);
// Right side initialisation
for (j = n - 2; j >= 0; j--) {
if (s[0] == s[j + 1]) {
longest = std::min(j + 1, m[0][j + 1][1]);
for (k = j + 1; k <= j + longest; k++)
dp[0][j] |= dp[0][k];
if (dp[0][j]) {
update(n, j, 1);
updateL(n, j, 0, 1);
best = std::min(best, j + 1);
}
}
}
// Left side initialisation
for (i = 1; i < n; i++) {
if (s[i - 1] == s[n - 1]) {
// We are bound by the current range
longest = std::min(n - i, m[i - 1][n - 1][0]);
for (k = i - 1; k >= i - longest; k--)
dp[i][n - 1] |= dp[k][n - 1];
if (dp[i][n - 1]) {
updateL(n, n - 1, i, 1);
best = std::min(best, n - i);
}
}
}
for (i = 1; i <= n - 2; i++) {
for (int ii = 0; ii < MAX_N; ii++) {
seg[ii * 2] = 0;
seg[ii * 2 + 1] = 0;
}
update(n, n - 1, dp[i][n - 1]);
for (j = n - 2; j >= i; j--) {
// We removed on the right
if (s[i] == s[j + 1]) {
// We are bound by half the current range
longest = std::min(j - i + 1, m[i][j + 1][1]);
//for (k=j+1; k<=j+longest; k++)
//dp[i][j] |= dp[i][k];
if (query(n, j + 1, j + longest + 1)) {
dp[i][j] = 1;
update(n, j, 1);
updateL(n, j, i, 1);
}
}
// We removed on the left
if (s[i - 1] == s[j]) {
// We are bound by half the current range
longest = std::min(j - i + 1, m[i - 1][j][0]);
//for (k=i-1; k>=i-longest; k--)
//dp[i][j] |= dp[k][j];
if (queryL(n, j, i - longest, i)) {
dp[i][j] = 1;
updateL(n, j, i, 1);
update(n, j, 1);
}
}
if (dp[i][j])
best = std::min(best, j - i + 1);
}
}
}
int so(string s) {
for (int i = 0; i < MAX_N; i++) {
seg[i * 2] = 0;
seg[i * 2 + 1] = 0;
for (int j = 0; j < MAX_N; j++) {
segsL[i][j * 2] = 0;
segsL[i][j * 2 + 1] = 0;
m[i][j][0] = 0;
m[i][j][1] = 0;
dp[i][j] = 0;
}
}
int n = s.length();
best = n;
precalc(n, s);
f(n, s);
return best;
}
// End code by גלעד ברקן
// Code by Bananon =======================================================================
int result;
int lps[MAX_N][MAX_N];
bool checked[MAX_N][MAX_N];
void check(int start, int length) {
checked[start][length] = true;
if (length < result) {
result = length;
}
for (int i = lps[start][length]; i != 0; i = lps[start][i - 1]) {
int newLength = length - i;
if (!checked[start][newLength])
check(start, newLength);
int newStart = start + i;
if (!checked[newStart][newLength])
check(newStart, newLength);
}
}
int my(string str) {
int n = str.length();
for (int l = 0; l < n; l++) {
int subLength = n - l;
lps[l][0] = 0;
checked[l][0] = false;
for (int i = 1; i < subLength; ++i) {
int j = lps[l][i - 1];
while (j > 0 && str[i + l] != str[j + l])
j = lps[l][j - 1];
if (str[i + l] == str[j + l]) j++;
lps[l][i] = j;
checked[l][i] = false;
}
}
result = n - 1;
check(0, n - 1);
return result + 1;
}
// generate =================================================================
bool rndBool() {
return rand() % 2 == 0;
}
int rnd(int bound) {
return rand() % bound;
}
void untrim(string & str) {
int length = rnd(str.length());
int prefixLength = rnd(str.length()) + 1;
if (rndBool())
str.append(str.substr(0, prefixLength));
else {
string newStr = str.substr(str.length() - prefixLength, prefixLength);
newStr.append(str);
str = newStr;
}
}
void rndTest(int minTestLength, string s) {
while (s.length() < minTestLength)
untrim(s);
int myAns = my(s);
int soAns = so(s);
cout << myAns << " " << soAns << '\n';
if (soAns != myAns) {
cout << s;
exit(0);
}
}
int main() {
int minTestLength;
cin >> minTestLength;
string seed;
cin >> seed;
while (true)
rndTest(minTestLength, seed);
}
And here's JavaScript code (without the log factor improvement) to show that the recurrence works. (To get the log factor, we replace the inner k
loops with a single range query.)
debug = 1
function precalc(s){
let m = new Array(s.length)
for (let i=0; i<s.length; i++){
m[i] = new Array(s.length)
for (let j=0; j<s.length; j++){
// [longest match left, longest match right]
m[i][j] = [(s[i] == s[j]) & 1, (s[i] == s[j]) & 1]
}
}
for (let i=s.length-2; i>=0; i--)
for (let j=s.length-2; j>=0; j--)
m[i][j][1] = s[i] == s[j] ? 1 + m[i+1][j+1][1] : 0
for (let i=1; i<s.length; i++)
for (let j=1; j<s.length; j++)
m[i][j][0] = s[i] == s[j] ? 1 + m[i-1][j-1][0] : 0
return m
}
function f(s){
m = precalc(s)
let n = s.length
let min = s.length
let dp = new Array(s.length)
for (let i=0; i<s.length; i++)
dp[i] = new Array(s.length).fill(0)
dp[0][s.length-1] = 1
// Right side initialisation
for (let j=s.length-2; j>=0; j--){
if (s[0] == s[j+1]){
let longest = Math.min(j + 1, m[0][j+1][1])
for (let k=j+1; k<=j+longest; k++)
dp[0][j] |= dp[0][k]
if (dp[0][j])
min = Math.min(min, j + 1)
}
}
// Left side initialisation
for (let i=1; i<s.length; i++){
if (s[i-1] == s[s.length-1]){
let longest = Math.min(s.length - i, m[i-1][s.length-1][0])
for (let k=i-1; k>=i-longest; k--)
dp[i][s.length-1] |= dp[k][s.length-1]
if (dp[i][s.length-1])
min = Math.min(min, s.length - i)
}
}
for (let i=1; i<=s.length-2; i++){
for (let j=s.length-2; j>=i; j--){
// We removed on the right
if (s[i] == s[j+1]){
// We are bound by half the current range
let longest = Math.min(j - i + 1, m[i][j+1][1])
for (let k=j+1; k<=j+longest; k++)
dp[i][j] |= dp[i][k]
}
// We removed on the left
if (s[i-1] == s[j]){
// We are bound by half the current range
let longest = Math.min(j - i + 1, m[i-1][j][0])
for (let k=i-1; k>=i-longest; k--)
dp[i][j] |= dp[k][j]
}
if (dp[i][j])
min = Math.min(min, j - i + 1)
}
}
if (debug){
let str = ""
for (let row of dp)
str += row + "\n"
console.log(str)
}
return min
}
function main(s){
var strs = [
"caaca",
"bbabbbba",
"baabbabaa",
"bbabbba",
"bbbabbbbba",
"abbabaabbab",
"abbabaabbaba",
"aabaabaaabaab",
"bbabbabbb"
]
for (let s of strs){
let t = new Date
console.log(s)
console.log(f(s))
//console.log((new Date - t)/1000)
console.log("")
}
}
main()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With