I'm using the following code for finding primitive roots modulo n
in Python:
Code:
def gcd(a,b):
while b != 0:
a, b = b, a % b
return a
def primRoots(modulo):
roots = []
required_set = set(num for num in range (1, modulo) if gcd(num, modulo) == 1)
for g in range(1, modulo):
actual_set = set(pow(g, powers) % modulo for powers in range (1, modulo))
if required_set == actual_set:
roots.append(g)
return roots
if __name__ == "__main__":
p = 17
primitive_roots = primRoots(p)
print(primitive_roots)
Output:
[3, 5, 6, 7, 10, 11, 12, 14]
Code fragment extracted from: Diffie-Hellman (Github)
Can the primRoots
method be simplified or optimized in terms of memory usage and performance/efficiency?
If you get n = 2*p+1, then the dividers for that n-1 (n is prime, Euler's function from n is n-1) are 1, 2, p and 2p, you need to check only if the number g at power 2 and g at power p if one of them gives 1, then that g is not primitive root, and you can throw that g away and select another g, the next one g+1, If g^2 ...
3. The primitive roots are the powers 2n mod 29 such that gcd(n, 28) = 1, i.e., {2n : n = 1, 3, 5, 9, 11, 13, 15, 17, 19, 23, 25, 27}, so the primitive roots are 2, 8, 3, 19, 18, 14, 27, 21, 26, 10, 11, 15.
One quick change that you can make here (not efficiently optimum yet) is using list and set comprehensions:
def primRoots(modulo):
coprime_set = {num for num in range(1, modulo) if gcd(num, modulo) == 1}
return [g for g in range(1, modulo) if coprime_set == {pow(g, powers, modulo)
for powers in range(1, modulo)}]
Now, one powerful and interesting algorithmic change that you can make here is to optimize your gcd
function using memoization. Or even better you can simply use built-in gcd
function form math
module in Python-3.5+ or fractions
module in former versions:
from functools import wraps
def cache_gcd(f):
cache = {}
@wraps(f)
def wrapped(a, b):
key = (a, b)
try:
result = cache[key]
except KeyError:
result = cache[key] = f(a, b)
return result
return wrapped
@cache_gcd
def gcd(a,b):
while b != 0:
a, b = b, a % b
return a
# or just do the following (recommended)
# from math import gcd
Then:
def primRoots(modulo):
coprime_set = {num for num in range(1, modulo) if gcd(num, modulo) == 1}
return [g for g in range(1, modulo) if coprime_set == {pow(g, powers, modulo)
for powers in range(1, modulo)}]
As mentioned in comments, as a more pythoinc optimizer way you can use fractions.gcd
(or for Python-3.5+ math.gcd
).
Based on the comment of Pete and answer of Kasramvd, I can suggest this:
from math import gcd as bltin_gcd
def primRoots(modulo):
required_set = {num for num in range(1, modulo) if bltin_gcd(num, modulo) }
return [g for g in range(1, modulo) if required_set == {pow(g, powers, modulo)
for powers in range(1, modulo)}]
print(primRoots(17))
Output:
[3, 5, 6, 7, 10, 11, 12, 14]
Changes:
math
(for Python 3.5
) for a speed boost.Additional info about built-in gcd is here: Co-primes checking
In the special case that p is prime, the following is a good bit faster:
import sys
# translated to Python from http://www.bluetulip.org/2014/programs/primitive.js
# (some rights may remain with the author of the above javascript code)
def isNotPrime(possible):
# We only test this here to protect people who copy and paste
# the code without reading the first sentence of the answer.
# In an application where you know the numbers are prime you
# will remove this function (and the call). If you need to
# test for primality, look for a more efficient algorithm, see
# for example Joseph F's answer on this page.
i = 2
while i*i <= possible:
if (possible % i) == 0:
return True
i = i + 1
return False
def primRoots(theNum):
if isNotPrime(theNum):
raise ValueError("Sorry, the number must be prime.")
o = 1
roots = []
r = 2
while r < theNum:
k = pow(r, o, theNum)
while (k > 1):
o = o + 1
k = (k * r) % theNum
if o == (theNum - 1):
roots.append(r)
o = 1
r = r + 1
return roots
print(primRoots(int(sys.argv[1])))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With