I am using following code to detect edges from given document.
private Mat edgeDetection(Mat src) {
Mat edges = new Mat();
Imgproc.cvtColor(src, edges, Imgproc.COLOR_BGR2GRAY);
Imgproc.GaussianBlur(edges, edges, new Size(5, 5), 0);
Imgproc.Canny(edges, edges, 10, 30);
return edges;
}
And then I can find the document from this edges
by finding largest contour from this.
My problem is I can find the document from following pic:
but not from following pic:
How can I improve this edge detection?
OpenCV has some built-in functions to perform Color detection and Segmentation operations. So what are Color Detection and Segmentation Techniques in Image Processing? Color detection is a technique of detecting any color in a given range of HSV (hue saturation value) color space.
Canny Edge Detection is used to detect the edges in an image. It accepts a gray scale image as input and it uses a multistage algorithm. You can perform this operation on an image using the Canny() method of the imgproc class, following is the syntax of this method.
Sobel Edge Detection is one of the most widely used algorithms for edge detection. The Sobel Operator detects edges that are marked by sudden changes in pixel intensity, as shown in the figure below. The rise in intensity is even more evident, when we plot the first derivative of the intensity function.
in color images. Edge detection is one of the most important tasks in image processing and scene analysis systems. It denotes the procedure of detecting meaningful discontinuities (edges) of the image function (see Figure 1 for an example of edge detection in color and gray-level image).
If you directly do cvtColor: bgr -> gray for img2, then you must fail. Because the gray becames difficulty to distinguish the regions:
Related answers:
In your image, the paper is white
, while the background is colored
. So, it's better to detect the paper is Saturation(饱和度)
channel in HSV color space
. For HSV, refer to https://en.wikipedia.org/wiki/HSL_and_HSV#Saturation.
BGR
bgr
to hsv
spaceCanny
, or HoughLines
as you like, I choose findContours
), approx to get the corners.This is the first result:
This is the second result:
The Python code(Python 3.5 + OpenCV 3.3):
#!/usr/bin/python3
# 2017.12.20 10:47:28 CST
# 2017.12.20 11:29:30 CST
import cv2
import numpy as np
##(1) read into bgr-space
img = cv2.imread("test2.jpg")
##(2) convert to hsv-space, then split the channels
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h,s,v = cv2.split(hsv)
##(3) threshold the S channel using adaptive method(`THRESH_OTSU`) or fixed thresh
th, threshed = cv2.threshold(s, 50, 255, cv2.THRESH_BINARY_INV)
##(4) find all the external contours on the threshed S
cnts = cv2.findContours(threshed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
canvas = img.copy()
#cv2.drawContours(canvas, cnts, -1, (0,255,0), 1)
## sort and choose the largest contour
cnts = sorted(cnts, key = cv2.contourArea)
cnt = cnts[-1]
## approx the contour, so the get the corner points
arclen = cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, 0.02* arclen, True)
cv2.drawContours(canvas, [cnt], -1, (255,0,0), 1, cv2.LINE_AA)
cv2.drawContours(canvas, [approx], -1, (0, 0, 255), 1, cv2.LINE_AA)
## Ok, you can see the result as tag(6)
cv2.imwrite("detected.png", canvas)
In OpenCV there is function called dilate
this will darker the lines. so try the code like below.
private Mat edgeDetection(Mat src) {
Mat edges = new Mat();
Imgproc.cvtColor(src, edges, Imgproc.COLOR_BGR2GRAY);
Imgproc.dilate(edges, edges, Imgproc.getStructuringElement(Imgproc.MORPH_RECT, new Size(10, 10)));
Imgproc.GaussianBlur(edges, edges, new Size(5, 5), 0);
Imgproc.Canny(edges, edges, 15, 15 * 3);
return edges;
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With