I am making an application in Python which collects data from a serial port and plots a graph of the collected data against arrival time. The time of arrival for the data is uncertain. I want the plot to be updated when data is received. I searched on how to do this and found two methods:
I do not prefer the first one as the program runs and collects data for a long time (a day for example), and redrawing the plot will be pretty slow. The second one is also not preferable as time of arrival of data is uncertain and I want the plot to update only when the data is received.
Is there a way in which I can update the plot just by adding more points to it only when the data is received?
To dynamically update plot in Python matplotlib, we can call draw after we updated the plot data. to define the update_line function. In it, we call set_xdata to set the data form the x-axis. And we call set_ydata to do the same for the y-axis.
We can use matplotlib to update a plot on every iteration during the loop. With the help of matplotlib. pyplot. draw() function we can update the plot on the same figure during the loop.
Is there a way in which I can update the plot just by adding more point[s] to it...
There are a number of ways of animating data in matplotlib, depending on the version you have. Have you seen the matplotlib cookbook examples? Also, check out the more modern animation examples in the matplotlib documentation. Finally, the animation API defines a function FuncAnimation which animates a function in time. This function could just be the function you use to acquire your data.
Each method basically sets the data
property of the object being drawn, so doesn't require clearing the screen or figure. The data
property can simply be extended, so you can keep the previous points and just keep adding to your line (or image or whatever you are drawing).
Given that you say that your data arrival time is uncertain your best bet is probably just to do something like:
import matplotlib.pyplot as plt import numpy hl, = plt.plot([], []) def update_line(hl, new_data): hl.set_xdata(numpy.append(hl.get_xdata(), new_data)) hl.set_ydata(numpy.append(hl.get_ydata(), new_data)) plt.draw()
Then when you receive data from the serial port just call update_line
.
In order to do this without FuncAnimation (eg you want to execute other parts of the code while the plot is being produced or you want to be updating several plots at the same time), calling draw
alone does not produce the plot (at least with the qt backend).
The following works for me:
import matplotlib.pyplot as plt plt.ion() class DynamicUpdate(): #Suppose we know the x range min_x = 0 max_x = 10 def on_launch(self): #Set up plot self.figure, self.ax = plt.subplots() self.lines, = self.ax.plot([],[], 'o') #Autoscale on unknown axis and known lims on the other self.ax.set_autoscaley_on(True) self.ax.set_xlim(self.min_x, self.max_x) #Other stuff self.ax.grid() ... def on_running(self, xdata, ydata): #Update data (with the new _and_ the old points) self.lines.set_xdata(xdata) self.lines.set_ydata(ydata) #Need both of these in order to rescale self.ax.relim() self.ax.autoscale_view() #We need to draw *and* flush self.figure.canvas.draw() self.figure.canvas.flush_events() #Example def __call__(self): import numpy as np import time self.on_launch() xdata = [] ydata = [] for x in np.arange(0,10,0.5): xdata.append(x) ydata.append(np.exp(-x**2)+10*np.exp(-(x-7)**2)) self.on_running(xdata, ydata) time.sleep(1) return xdata, ydata d = DynamicUpdate() d()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With