Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Dynamically evaluating simple boolean logic in Python

I've got some dynamically-generated boolean logic expressions, like:

  • (A or B) and (C or D)
  • A or (A and B)
  • A
  • empty - evaluates to True

The placeholders get replaced with booleans. Should I,

  1. Convert this information to a Python expression like True or (True or False) and eval it?
  2. Create a binary tree where a node is either a bool or Conjunction/Disjunction object and recursively evaluate it?
  3. Convert it into nested S-expressions and use a Lisp parser?
  4. Something else?

Suggestions welcome.

like image 673
a paid nerd Avatar asked Mar 18 '10 04:03

a paid nerd


People also ask

How do you evaluate a boolean expression in Python?

Evaluate Variables Using BooleanPython includes a built-in function called bool() that you can use to evaluate a variable or value. bool() takes in one argument: the value or variable you want to evaluate. The bool() method can be useful in a number of cases. The output of our code is True .

What are the 3 Boolean operators in Python?

There are three logical operators that are used to compare values. They evaluate expressions down to Boolean values, returning either True or False . These operators are and , or , and not and are defined in the table below.

How do you compare two boolean values in Python?

The operator is tests for object identity, 'x is y' is true if both x and y have the same id. That is, they are same objects. So, when you are comparing if you comparing the return values of same type, use == and if you are comparing if two objects are same (be it boolean or anything else), you can use is .

What is boolean logic in Python?

Practical Data Science using Python The logical operators and, or and not are also referred to as boolean operators. While and as well as or operator needs two operands, which may evaluate to true or false, not operator needs one operand evaluating to true or false.


2 Answers

Here's a small (possibly, 74 lines including whitespace) module I built in about an hour and a half (plus almost an hour to refactoring):

str_to_token = {'True':True,
                'False':False,
                'and':lambda left, right: left and right,
                'or':lambda left, right: left or right,
                '(':'(',
                ')':')'}

empty_res = True


def create_token_lst(s, str_to_token=str_to_token):
    """create token list:
    'True or False' -> [True, lambda..., False]"""
    s = s.replace('(', ' ( ')
    s = s.replace(')', ' ) ')

    return [str_to_token[it] for it in s.split()]


def find(lst, what, start=0):
    return [i for i,it in enumerate(lst) if it == what and i >= start]


def parens(token_lst):
    """returns:
        (bool)parens_exist, left_paren_pos, right_paren_pos
    """
    left_lst = find(token_lst, '(')

    if not left_lst:
        return False, -1, -1

    left = left_lst[-1]

    #can not occur earlier, hence there are args and op.
    right = find(token_lst, ')', left + 4)[0]

    return True, left, right


def bool_eval(token_lst):
    """token_lst has length 3 and format: [left_arg, operator, right_arg]
    operator(left_arg, right_arg) is returned"""
    return token_lst[1](token_lst[0], token_lst[2])


def formatted_bool_eval(token_lst, empty_res=empty_res):
    """eval a formatted (i.e. of the form 'ToFa(ToF)') string"""
    if not token_lst:
        return empty_res

    if len(token_lst) == 1:
        return token_lst[0]

    has_parens, l_paren, r_paren = parens(token_lst)

    if not has_parens:
        return bool_eval(token_lst)

    token_lst[l_paren:r_paren + 1] = [bool_eval(token_lst[l_paren+1:r_paren])]

    return formatted_bool_eval(token_lst, bool_eval)


def nested_bool_eval(s):
    """The actual 'eval' routine,
    if 's' is empty, 'True' is returned,
    otherwise 's' is evaluated according to parentheses nesting.
    The format assumed:
        [1] 'LEFT OPERATOR RIGHT',
        where LEFT and RIGHT are either:
                True or False or '(' [1] ')' (subexpression in parentheses)
    """
    return formatted_bool_eval(create_token_lst(s))

The simple tests give:

>>> print nested_bool_eval('')
True
>>> print nested_bool_eval('False')
False
>>> print nested_bool_eval('True or False')
True
>>> print nested_bool_eval('True and False')
False
>>> print nested_bool_eval('(True or False) and (True or False)')
True
>>> print nested_bool_eval('(True or False) and (True and False)')
False
>>> print nested_bool_eval('(True or False) or (True and False)')
True
>>> print nested_bool_eval('(True and False) or (True and False)')
False
>>> print nested_bool_eval('(True and False) or (True and (True or False))')
True

[Partially off-topic possibly]

Note, the you can easily configure the tokens (both operands and operators) you use with the poor-mans dependency-injection means provided (token_to_char=token_to_char and friends) to have multiple different evaluators at the same time (just resetting the "injected-by-default" globals will leave you with a single behavior).

For example:

def fuzzy_bool_eval(s):
    """as normal, but:
    - an argument 'Maybe' may be :)) present
    - algebra is:
    [one of 'True', 'False', 'Maybe'] [one of 'or', 'and'] 'Maybe' -> 'Maybe'
    """
    Maybe = 'Maybe' # just an object with nice __str__

    def or_op(left, right):
        return (Maybe if Maybe in [left, right] else (left or right))

    def and_op(left, right):
        args = [left, right]

        if Maybe in args:
            if True in args:
                return Maybe # Maybe and True -> Maybe
            else:
                return False # Maybe and False -> False

        return left and right

    str_to_token = {'True':True,
                    'False':False,
                    'Maybe':Maybe,
                    'and':and_op,
                    'or':or_op,
                    '(':'(',
                    ')':')'}

    token_lst = create_token_lst(s, str_to_token=str_to_token)

    return formatted_bool_eval(token_lst)

gives:

>>> print fuzzy_bool_eval('')
True
>>> print fuzzy_bool_eval('Maybe')
Maybe
>>> print fuzzy_bool_eval('True or False')
True
>>> print fuzzy_bool_eval('True or Maybe')
Maybe
>>> print fuzzy_bool_eval('False or (False and Maybe)')
False
like image 107
mlvljr Avatar answered Sep 19 '22 03:09

mlvljr


It shouldn't be difficult at all to write a evaluator that can handle this, for example using pyparsing. You only have a few operations to handle (and, or, and grouping?), so you should be able to parse and evaluate it yourself.

You shouldn't need to explicitly form the binary tree to evaluate the expression.

like image 28
Mike Graham Avatar answered Sep 21 '22 03:09

Mike Graham