I am trying to draw ellipses on a basemap projection. To draw a circle like polygon there is the tissot
function used to draw Tissot's indicatrix' as illustrates the following example.
from mpl_toolkits.basemap import Basemap
x0, y0 = 35, -50
R = 5
m = Basemap(width=8000000,height=7000000, resolution='l',projection='aea',
lat_1=-40.,lat_2=-60,lon_0=35,lat_0=-50)
m.drawcoastlines()
m.tissot(x0, y0, R, 100, facecolor='g', alpha=0.5)
However, I am interested in plotting an ellipsis in the form (x-x0)**2/a**2 + (y-y0)**2/2 = 1
. On the other hand, to draw an ellipsis on a regular Cartesian grid I can use the following sample code:
import pylab
from matplotlib.patches import Ellipse
fig = pylab.figure()
ax = pylab.subplot(1, 1, 1, aspect='equal')
x0, y0 = 35, -50
w, h = 10, 5
e = Ellipse(xy=(x0, y0), width=w, height=h, linewidth=2.0, color='g')
ax.add_artist(e)
e.set_clip_box(ax.bbox)
e.set_alpha(0.7)
pylab.xlim([20, 50])
pylab.ylim([-65, -35])
Is there a way to plot an ellipsis on a basemap projection with the an effect similar to tissot
?
After hours analyzing the source code of basemap's tissot
function, learning some properties of ellipses and lot's of debugging, I came with a solution to my problem. I've extended the basemap class with a new function called ellipse
as follows,
from __future__ import division
import pylab
import numpy
from matplotlib.patches import Polygon
from mpl_toolkits.basemap import pyproj
from mpl_toolkits.basemap import Basemap
class Basemap(Basemap):
def ellipse(self, x0, y0, a, b, n, ax=None, **kwargs):
"""
Draws a polygon centered at ``x0, y0``. The polygon approximates an
ellipse on the surface of the Earth with semi-major-axis ``a`` and
semi-minor axis ``b`` degrees longitude and latitude, made up of
``n`` vertices.
For a description of the properties of ellipsis, please refer to [1].
The polygon is based upon code written do plot Tissot's indicatrix
found on the matplotlib mailing list at [2].
Extra keyword ``ax`` can be used to override the default axis instance.
Other \**kwargs passed on to matplotlib.patches.Polygon
RETURNS
poly : a maptplotlib.patches.Polygon object.
REFERENCES
[1] : http://en.wikipedia.org/wiki/Ellipse
"""
ax = kwargs.pop('ax', None) or self._check_ax()
g = pyproj.Geod(a=self.rmajor, b=self.rminor)
# Gets forward and back azimuths, plus distances between initial
# points (x0, y0)
azf, azb, dist = g.inv([x0, x0], [y0, y0], [x0+a, x0], [y0, y0+b])
tsid = dist[0] * dist[1] # a * b
# Initializes list of segments, calculates \del azimuth, and goes on
# for every vertex
seg = [self(x0+a, y0)]
AZ = numpy.linspace(azf[0], 360. + azf[0], n)
for i, az in enumerate(AZ):
# Skips segments along equator (Geod can't handle equatorial arcs).
if numpy.allclose(0., y0) and (numpy.allclose(90., az) or
numpy.allclose(270., az)):
continue
# In polar coordinates, with the origin at the center of the
# ellipse and with the angular coordinate ``az`` measured from the
# major axis, the ellipse's equation is [1]:
#
# a * b
# r(az) = ------------------------------------------
# ((b * cos(az))**2 + (a * sin(az))**2)**0.5
#
# Azymuth angle in radial coordinates and corrected for reference
# angle.
azr = 2. * numpy.pi / 360. * (az + 90.)
A = dist[0] * numpy.sin(azr)
B = dist[1] * numpy.cos(azr)
r = tsid / (B**2. + A**2.)**0.5
lon, lat, azb = g.fwd(x0, y0, az, r)
x, y = self(lon, lat)
# Add segment if it is in the map projection region.
if x < 1e20 and y < 1e20:
seg.append((x, y))
poly = Polygon(seg, **kwargs)
ax.add_patch(poly)
# Set axes limits to fit map region.
self.set_axes_limits(ax=ax)
return poly
This new function can be used promptly like in this example:
pylab.close('all')
pylab.ion()
m = Basemap(width=12000000, height=8000000, resolution='l', projection='stere',
lat_ts=50, lat_0=50, lon_0=-107.)
m.drawcoastlines()
m.fillcontinents(color='coral',lake_color='aqua')
# draw parallels and meridians.
m.drawparallels(numpy.arange(-80.,81.,20.))
m.drawmeridians(numpy.arange(-180.,181.,20.))
m.drawmapboundary(fill_color='aqua')
# draw ellipses
ax = pylab.gca()
for y in numpy.linspace(m.ymax/20, 19*m.ymax/20, 9):
for x in numpy.linspace(m.xmax/20, 19*m.xmax/20, 12):
lon, lat = m(x, y, inverse=True)
poly = m.ellipse(lon, lat, 3, 1.5, 100, facecolor='green', zorder=10,
alpha=0.5)
pylab.title("Ellipses on stereographic projection")
Which has the following outcome:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With