Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Double multiplied by 100 and then cast to long is giving wrong value

I have the following code:

Double i=17.31; long j=(long) (i*100); System.out.println(j); 

O/P : 1730 //Expected:1731

Double i=17.33; long j=(long) (i*100); System.out.println(j); 

O/P : 1732 //Expected:1733

Double i=17.32; long j=(long) (i*100); System.out.println(j); 

O/P : 1732 //Expected:1732{As expected}

Double i=15.33; long j=(long) (i*100); System.out.println(j); 

O/P : 1533 //Expected:1533{as Expected}

I have tried to Google but unable to find reason.I am sorry if the question is trivial.

like image 923
xyz Avatar asked Nov 20 '12 06:11

xyz


1 Answers

None of the answers seem to deal with why 17.32 acted different.

1. Why it occurred

The difference in behaviour you see between 17.32 and 17.33 & 17.31 is due to IEEE-754 Rounding rules.

Rounding rule applied: from, The Java™ Virtual Machine Specification §2.8.1

The rounding operations of the Java virtual machine always use IEEE 754 round to nearest mode. Inexact results are rounded to the nearest representable value, with ties going to the value with a zero least-significant bit. This is the IEEE 754 default mode. The Java virtual machine does not give any means to change the floating-point rounding mode


2. Your case:

Double is: (1 sign-bit + 11 exponent-bits + 52 fraction-bits = 64bits). Internal representation after rounding below:

             1 [63]      11 [62-52]           52 [51-00]               Sign        Exponent             Fraction  17.31 -->    0 (+)       10000000011 (+4)     1.0001010011110101110000101000111101011100001010001111 17.32 -->    0 (+)       10000000011 (+4)     1.0001010100011110101110000101000111101011100001010010 //rounded up 17.33 -->    0 (+)       10000000011 (+4)     1.0001010101000111101011100001010001111010111000010100 

3. Internal representation (Proof):

17.31: (Mantissa comparison)

Actual:   1.00010100111101011100001010001111010111000010100011110... Internal: 1.0001010011110101110000101000111101011100001010001111 

17.32: (Mantissa comparison)

Actual:   1.00010101000111101011100001010001111010111000010100011...  Internal: 1.0001010100011110101110000101000111101011100001010010    //round-up! 

17.33: (Mantissa comparison)

Actual:   1.00010101010001111010111000010100011110101110000101000... Internal: 1.0001010101000111101011100001010001111010111000010100 

4. Conversion back-to-decimal:

17.31 ->  17.309999999999998721023075631819665431976318359375... 17.32 ->  17.32000000000000028421709430404007434844970703125... //(was rounded up) 17.33 ->  17.3299999999999982946974341757595539093017578125... 

(IEEE-754 Analysis Tool)

5. Cast to long

EDIT: There is a factor more at play at your multiplication step as @Jeppe Stig Nielsen said. The result of the FP multiplication (Reference) step does its own rounding-towards-nearest. This changes which results are as expected and which aren't, but the reason is still exactly the same as stated above.

Finally, due to the cast (long), truncation occurs, and leaves you with the results you see. (1730, 1732, 1732)

Narrowing Primitive Conversion : The Java™ Language Specification §5.1.3

If the floating-point number is not an infinity, the floating-point value is rounded to an integer value V, rounding toward zero using IEEE 754 round-toward-zero mode

like image 135
Anirudh Ramanathan Avatar answered Oct 06 '22 18:10

Anirudh Ramanathan