Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Does spark optimize identical but independent DAGs in pyspark?

Consider the following pyspark code

def transformed_data(spark):
    df = spark.read.json('data.json')
    df = expensive_transformation(df)  # (A)    
    return df


df1 = transformed_data(spark)
df = transformed_data(spark)

df1 = foo_transform(df1)
df = bar_transform(df)

return df.join(df1)

my question is: are the operations defined as (A) on transformed_data optimized in the final_view, so that it is only performed once?

Note that this code is not equivalent to

df1 = transformed_data(spark)
df = df1

df1 = foo_transform(df1)
df = bar_transform(df)

df.join(df1)

(at least from the Python's point of view, on which id(df1) = id(df) in this case.

The broader question is: what does spark consider when optimizing two equal DAGs: whether the DAGs (as defined by their edges and nodes) are equal, or whether their object ids (df = df1) are equal?

like image 339
Jorge Leitao Avatar asked Mar 13 '19 17:03

Jorge Leitao


1 Answers

Kinda. It relies on Spark having enough information to infer a dependence.

For instance, I replicated your example as described:

from pyspark.sql.functions import hash
def f(spark, filename):
    df=spark.read.csv(filename)
    df2=df.select(hash('_c1').alias('hashc2'))
    df3=df2.select(hash('hashc2').alias('hashc3'))
    df4=df3.select(hash('hashc3').alias('hashc4'))
    return df4

filename = 'some-valid-file.csv'
df_a = f(spark, filename)
df_b = f(spark, filename)
assert df_a != df_b

df_joined = df_a.join(df_b, df_a.hashc4==df_b.hashc4, how='left')

If I explain this resulting dataframe using df_joined.explain(extended=True), I see the following four plans:

== Parsed Logical Plan ==
Join LeftOuter, (hashc4#20 = hashc4#42)
:- Project [hash(hashc3#18, 42) AS hashc4#20]
:  +- Project [hash(hashc2#16, 42) AS hashc3#18]
:     +- Project [hash(_c1#11, 42) AS hashc2#16]
:        +- Relation[_c0#10,_c1#11,_c2#12] csv
+- Project [hash(hashc3#40, 42) AS hashc4#42]
   +- Project [hash(hashc2#38, 42) AS hashc3#40]
      +- Project [hash(_c1#33, 42) AS hashc2#38]
         +- Relation[_c0#32,_c1#33,_c2#34] csv
== Analyzed Logical Plan ==
hashc4: int, hashc4: int
Join LeftOuter, (hashc4#20 = hashc4#42)
:- Project [hash(hashc3#18, 42) AS hashc4#20]
:  +- Project [hash(hashc2#16, 42) AS hashc3#18]
:     +- Project [hash(_c1#11, 42) AS hashc2#16]
:        +- Relation[_c0#10,_c1#11,_c2#12] csv
+- Project [hash(hashc3#40, 42) AS hashc4#42]
   +- Project [hash(hashc2#38, 42) AS hashc3#40]
      +- Project [hash(_c1#33, 42) AS hashc2#38]
         +- Relation[_c0#32,_c1#33,_c2#34] csv
== Optimized Logical Plan ==
Join LeftOuter, (hashc4#20 = hashc4#42)
:- Project [hash(hash(hash(_c1#11, 42), 42), 42) AS hashc4#20]
:  +- Relation[_c0#10,_c1#11,_c2#12] csv
+- Project [hash(hash(hash(_c1#33, 42), 42), 42) AS hashc4#42]
   +- Relation[_c0#32,_c1#33,_c2#34] csv
== Physical Plan ==
SortMergeJoin [hashc4#20], [hashc4#42], LeftOuter
:- *(2) Sort [hashc4#20 ASC NULLS FIRST], false, 0
:  +- Exchange hashpartitioning(hashc4#20, 200)
:     +- *(1) Project [hash(hash(hash(_c1#11, 42), 42), 42) AS hashc4#20]
:        +- *(1) FileScan csv [_c1#11] Batched: false, Format: CSV, Location: InMemoryFileIndex[file: some-valid-file.csv], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<_c1:string>
+- *(4) Sort [hashc4#42 ASC NULLS FIRST], false, 0
   +- ReusedExchange [hashc4#42], Exchange hashpartitioning(hashc4#20, 200)

The physical plan above only reads the CSV once and re-uses all the computation, since Spark detects that the two FileScans are identical (i.e. Spark knows that they are not independent).

Now consider if I replace the read.csv with hand-crafted independent, yet identical RDDs.

from pyspark.sql.functions import hash
def g(spark):
    df=spark.createDataFrame([('a', 'a'), ('b', 'b'), ('c', 'c')], ["_c1", "_c2"])
    df2=df.select(hash('_c1').alias('hashc2'))
    df3=df2.select(hash('hashc2').alias('hashc3'))
    df4=df3.select(hash('hashc3').alias('hashc4'))
    return df4

df_c = g(spark)
df_d = g(spark)
df_joined = df_c.join(df_d, df_c.hashc4==df_d.hashc4, how='left')

In this case, Spark's physical plan scans two different RDDs. Here's the output of running df_joined.explain(extended=True) to confirm.

== Parsed Logical Plan ==
Join LeftOuter, (hashc4#8 = hashc4#18)
:- Project [hash(hashc3#6, 42) AS hashc4#8]
:  +- Project [hash(hashc2#4, 42) AS hashc3#6]
:     +- Project [hash(_c1#0, 42) AS hashc2#4]
:        +- LogicalRDD [_c1#0, _c2#1], false
+- Project [hash(hashc3#16, 42) AS hashc4#18]
   +- Project [hash(hashc2#14, 42) AS hashc3#16]
      +- Project [hash(_c1#10, 42) AS hashc2#14]
         +- LogicalRDD [_c1#10, _c2#11], false

== Analyzed Logical Plan ==
hashc4: int, hashc4: int
Join LeftOuter, (hashc4#8 = hashc4#18)
:- Project [hash(hashc3#6, 42) AS hashc4#8]
:  +- Project [hash(hashc2#4, 42) AS hashc3#6]
:     +- Project [hash(_c1#0, 42) AS hashc2#4]
:        +- LogicalRDD [_c1#0, _c2#1], false
+- Project [hash(hashc3#16, 42) AS hashc4#18]
   +- Project [hash(hashc2#14, 42) AS hashc3#16]
      +- Project [hash(_c1#10, 42) AS hashc2#14]
         +- LogicalRDD [_c1#10, _c2#11], false

== Optimized Logical Plan ==
Join LeftOuter, (hashc4#8 = hashc4#18)
:- Project [hash(hash(hash(_c1#0, 42), 42), 42) AS hashc4#8]
:  +- LogicalRDD [_c1#0, _c2#1], false
+- Project [hash(hash(hash(_c1#10, 42), 42), 42) AS hashc4#18]
   +- LogicalRDD [_c1#10, _c2#11], false

== Physical Plan ==
SortMergeJoin [hashc4#8], [hashc4#18], LeftOuter
:- *(2) Sort [hashc4#8 ASC NULLS FIRST], false, 0
:  +- Exchange hashpartitioning(hashc4#8, 200)
:     +- *(1) Project [hash(hash(hash(_c1#0, 42), 42), 42) AS hashc4#8]
:        +- Scan ExistingRDD[_c1#0,_c2#1]
+- *(4) Sort [hashc4#18 ASC NULLS FIRST], false, 0
   +- Exchange hashpartitioning(hashc4#18, 200)
      +- *(3) Project [hash(hash(hash(_c1#10, 42), 42), 42) AS hashc4#18]
         +- Scan ExistingRDD[_c1#10,_c2#11]

This isn't really PySpark-specific behaviour.

like image 113
Jedi Avatar answered Oct 21 '22 13:10

Jedi