I am developing a model using linear regression to predict the age. I know that the age is from 0 to 100 and it is a possible value. I used conv 1 x 1 in the last layer to predict the real value. Do I need to add a ReLU function after the output of convolution 1x1 to guarantee the predicted value is a positive value? Currently, I did not add ReLU and some predicted value becomes negative value like -0.02 -0.4…
There's no compelling reason to use an activation function for the output layer; typically you just want to use a reasonable/suitable loss function directly with the penultimate layer's output. Specifically, a RELU doesn't solve your problem (or at most only solves 'half' of it) since it can still predict above 100. In this case -predicting a continuous outcome- there's a few standard loss functions like squared error or L1-norm.
If you really want to use an activation function for this final layer and are concerned about always predicting within a bounded interval, you could always try scaling up the sigmoid function (to between 0 and 100). However, there's nothing special about sigmoid here - any bounded function, ex. any CDF of a signed, continuous random variable, could be similarly used. Though for optimization, something easily differentiable is important.
Why not start with something simple like squared-error loss? It's always possible to just 'clamp' out-of-range predictions to within [0-100] (we can give this a fancy name like 'doubly RELU') when you need to actually make predictions (as opposed to during training/testing), but if you're getting lots of such errors, the model might have more fundamental problems.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With