I'm working in a project that isolate vocal parts from an audio. I'm using the DSD100 dataset, but for doing tests I'm using the DSD100subset dataset from I only use the mixtures and the vocals. I'm basing this work on this article
First I process the audios to extract a spectrogram and put it on a list, with all the audios forming four lists (trainMixed, trainVocals, testMixed, testVocals). Like this:
def to_spec(wav, n_fft=1024, hop_length=256):
return librosa.stft(wav, n_fft=n_fft, hop_length=hop_length)
def prepareData(filename, sr=22050, hop_length=256, n_fft=1024):
audio_wav = librosa.load(filename, sr=sr, mono=True, duration=30)[0]
audio_spec=to_spec(audio_wav, n_fft=n_fft, hop_length=hop_length)
audio_spec_mag = np.abs(audio_spec)
maxVal = np.max(audio_spec_mag)
return audio_spec_mag, maxVal
# FOR EVERY LIST (trainMixed, trainVocals, testMixed, testVocals)
trainMixed = []
trainMixedNum = 0
for (root, dirs, files) in walk('./Dev-subset-mix/Dev/'):
for d in dirs:
filenameMix = './Dev-subset-mix/Dev/'+d+'/mixture.wav'
spec_mag, maxVal = prepareData(filenameMix, n_fft=1024, hop_length=256)
trainMixed.append(spec_mag/maxVal)
Next i build the model:
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
from keras.optimizers import SGD
from keras.layers.advanced_activations import LeakyReLU
model = Sequential()
model.add(Conv2D(16, (3,3), padding='same', input_shape=(513, 25, 1)))
model.add(LeakyReLU())
model.add(Conv2D(16, (3,3), padding='same'))
model.add(LeakyReLU())
model.add(MaxPooling2D(pool_size=(3,3)))
model.add(Dropout(0.25))
model.add(Conv2D(16, (3,3), padding='same'))
model.add(LeakyReLU())
model.add(Conv2D(16, (3,3), padding='same'))
model.add(LeakyReLU())
model.add(MaxPooling2D(pool_size=(3,3)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(64))
model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
sgd = SGD(lr=0.001, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss=keras.losses.binary_crossentropy, optimizer=sgd, metrics=['accuracy'])
And run the model:
model.fit(trainMixed, trainVocals,epochs=10, validation_data=(testMixed, testVocals))
But I'm getting this result:
ValueError: in user code:
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:806 train_function *
return step_function(self, iterator)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:796 step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:1211 run
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2585 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/distribute_lib.py:2945 _call_for_each_replica
return fn(*args, **kwargs)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:789 run_step **
outputs = model.train_step(data)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:747 train_step
y_pred = self(x, training=True)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/base_layer.py:976 __call__
self.name)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/input_spec.py:158 assert_input_compatibility
' input tensors. Inputs received: ' + str(inputs))
ValueError: Layer sequential_1 expects 1 inputs, but it received 2 input tensors. Inputs received: [<tf.Tensor 'IteratorGetNext:0' shape=(None, 2584) dtype=float32>, <tf.Tensor 'IteratorGetNext:1' shape=(None, 2584) dtype=float32>]
I am new to this topic, thanks for the help provided in advance.
It's probably an issue with specifying input data to Keras' fit()
function. I would recommend using a tf.data.Dataset
as input to fit()
like so:
import tensorflow as tf
train_data = tf.data.Dataset.from_tensor_slices((trainMixed, trainVocals))
valid_data = tf.data.Dataset.from_tensor_slices((testMixed, testVocals))
model.fit(train_data, epochs=10, validation_data=valid_data)
You can then also use functions like shuffle()
and batch()
on the TF datasets.
EDIT: It also seems like your input shapes are incorrect. The input_shape
you specified for the first conv layer is (513, 25, 1)
, so the input should be a batch tensor of shape (batch_size, 513, 25, 1)
, whereas you're inputting the shape (batch_size, 2584)
. So you'll need to reshape and probably cut your inputs to the specified shape, or specify a new shape.
Basically, no matter what you define the shape of Conv2D is 2D, 3D,... it requires 4D when you feeding input X to it, where X.shape is look like this (batch,row,col,channel).
The below example here is the clarify about Conv2D
input_layer= layers.InputLayer(input_shape=(2,2,1))
conv1 = layers.Conv2D(3,(2,2))
X= np.ones((2,2))
X =X.reshape(1,X.shape[0],X.shape[1],1) # shape of X is 4D, (1, 2, 2, 1)
conv1(input_layer(X))
TL;DR
Now let's elaborating above codes
Line 1 input_layer
was defined with the shape of 3D, but at line no.4 X
was reshaped to 4D shape which is not matching the shape at all. However, in order to feed any input X to input_layer
or Conv2D
must pass with 4D shape.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With