I'm using Pydantic to define hierarchical data in which there are models with identical attributes.
However, when I save and load these models, Pydantic can no longer distinguish which model was used and picks the first one in the field type annotation.
I understand that this is expected behavior based on the documentation. However, the class type information is important to my application.
What is the recommended way to distinguish between different classes in Pydantic? One hack is to simply add an extraneous field to one of the models, but I'd like to find a more elegant solution.
See the simplified example below: container
is initialized with data of type DataB
, but after exporting and loading, the new container
has data of type DataA
as it's the first element in the type declaration of container.data
.
Thanks for your help!
from abc import ABC
from pydantic import BaseModel #pydantic 1.8.2
from typing import Union
class Data(BaseModel, ABC):
""" base class for a Member """
number: float
class DataA(Data):
""" A type of Data"""
pass
class DataB(Data):
""" Another type of Data """
pass
class Container(BaseModel):
""" container holds a subclass of Data """
data: Union[DataA, DataB]
# initialize container with DataB
data = DataB(number=1.0)
container = Container(data=data)
# export container to string and load new container from string
string = container.json()
new_container = Container.parse_raw(string)
# look at type of container.data
print(type(new_container.data).__name__)
# >>> DataA
As correctly noted in the comments, without storing additional information models cannot be distinguished when parsing.
As of today (pydantic v1.8.2), the most canonical way to distinguish models when parsing in a Union
(in case of ambiguity) is to explicitly add a type specifier Literal
. It will look like this:
from abc import ABC
from pydantic import BaseModel
from typing import Union, Literal
class Data(BaseModel, ABC):
""" base class for a Member """
number: float
class DataA(Data):
""" A type of Data"""
tag: Literal['A'] = 'A'
class DataB(Data):
""" Another type of Data """
tag: Literal['B'] = 'B'
class Container(BaseModel):
""" container holds a subclass of Data """
data: Union[DataA, DataB]
# initialize container with DataB
data = DataB(number=1.0)
container = Container(data=data)
# export container to string and load new container from string
string = container.json()
new_container = Container.parse_raw(string)
# look at type of container.data
print(type(new_container.data).__name__)
# >>> DataB
This method can be automated, but you can use it at your own responsibility, since it breaks static typing and uses objects that may change in future versions:
from pydantic.fields import ModelField
class Data(BaseModel, ABC):
""" base class for a Member """
number: float
def __init_subclass__(cls, **kwargs):
name = 'tag'
value = cls.__name__
annotation = Literal[value]
tag_field = ModelField.infer(name=name, value=value, annotation=annotation, class_validators=None, config=cls.__config__)
cls.__fields__[name] = tag_field
cls.__annotations__[name] = annotation
class DataA(Data):
""" A type of Data"""
pass
class DataB(Data):
""" Another type of Data """
pass
Just wanted to take the opportunity to list another possible alternative here to pydantic
- which already supports this use case very well, as per below answer.
I am the creator and maintainer of a relatively newer and lesser-known JSON serialization library, the Dataclass Wizard - which relies on the Python dataclasses
module to perform its magic. As of the latest version, 0.14.0, the dataclass-wizard
now supports dataclasses within Union types. Previously, it did not support dataclasses within Union
types at all, which was kind of a glaring omission, and something on my "to-do" list of things to (eventually) add support for.
As of the latest, it should now support defining dataclasses within Union
types. The reason it did not generally work before, is because the data being de-serialized is often a JSON object, which only knows simple types such as arrays and dictionaries, for example. A dict
type would not otherwise match any of the Union[Data1, Data2]
types, even if the object had all the correct dataclass fields as keys. This is simply because it doesn't compare the dict
object against each of the dataclass fields in the Union
types, though that might change in a future release.
So in any case, here is a simple example to demonstrate the usage of dataclasses in Union
types, using a class inheritance model with the JSONWizard
mixin class:
from abc import ABC
from dataclasses import dataclass
from typing import Union
from dataclass_wizard import JSONWizard
@dataclass
class Data(ABC):
""" base class for a Member """
number: float
class DataA(Data, JSONWizard):
""" A type of Data"""
class _(JSONWizard.Meta):
"""
This defines a custom tag that uniquely identifies the dataclass.
"""
tag = 'A'
class DataB(Data, JSONWizard):
""" Another type of Data """
class _(JSONWizard.Meta):
"""
This defines a custom tag that uniquely identifies the dataclass.
"""
tag = 'B'
@dataclass
class Container(JSONWizard):
""" container holds a subclass of Data """
data: Union[DataA, DataB]
The usage is shown below, and is again pretty straightforward. It relies on a special __tag__
key set in a dictionary or JSON object to marshal it into the correct dataclass, based on the Meta.tag
value for that class, that we have set up above.
print('== Load with DataA ==')
input_dict = {
'data': {
'number': '1.0',
'__tag__': 'A'
}
}
# De-serialize the `dict` object to a `Container` instance.
container = Container.from_dict(input_dict)
print(repr(container))
# prints:
# Container(data=DataA(number=1.0))
# Show the prettified JSON representation of the instance.
print(container)
# Assert we load the correct dataclass from the annotated `Union` types
assert type(container.data) == DataA
print()
print('== Load with DataB ==')
# initialize container with DataB
data_b = DataB(number=2.0)
container = Container(data=data_b)
print(repr(container))
# prints:
# Container(data=DataB(number=2.0))
# Show the prettified JSON representation of the instance.
print(container)
# Assert we load the correct dataclass from the annotated `Union` types
assert type(container.data) == DataB
# Assert we end up with the same instance when serializing and de-serializing
# our data.
string = container.to_json()
assert container == Container.from_json(string)
Here is the same example as above, but with relying solely on dataclasses
, without using any special class inheritance model:
from abc import ABC
from dataclasses import dataclass
from typing import Union
from dataclass_wizard import asdict, fromdict, LoadMeta
@dataclass
class Data(ABC):
""" base class for a Member """
number: float
class DataA(Data):
""" A type of Data"""
class DataB(Data):
""" Another type of Data """
@dataclass
class Container:
""" container holds a subclass of Data """
data: Union[DataA, DataB]
# Setup tags for the dataclasses. This can be passed into either
# `LoadMeta` or `DumpMeta`.
#
# Note that I'm not a fan of this syntax either, so it might change. I was
# thinking of something more explicit, like `LoadMeta(...).bind_to(class)`
LoadMeta(DataA, tag='A')
LoadMeta(DataB, tag='B')
# The rest is the same as before.
# initialize container with DataB
data = DataB(number=2.0)
container = Container(data=data)
print(repr(container))
# prints:
# Container(data=DataB(number=2.0))
# Assert we load the correct dataclass from the annotated `Union` types
assert type(container.data) == DataB
# Assert we end up with the same data when serializing and de-serializing.
out_dict = asdict(container)
assert container == fromdict(Container, out_dict)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With