I am thinking about modelling a material flow network. There are processes which operate at a certain speed, buffers which can overflow or underflow and connections between these.
I don't see any problems modelling this in a classic Discrete Event Simulation (DES) fashion using a global event queue. I tried modelling the system without a queue but failed in early stages. Still I do not understand the underlying reason why a queue is needed, at least not for events which originate "inside" the network.
The idea of a queue-less DES is to treat the whole network as a function which takes a stream of events from the outside world and returns a stream of state changes. Every node in the network should only be affected by nodes which are directly connected to it. I have set some hopes on Haskell's arrows and Functional Reactive Programming (FRP) in general, but I am still learning.
An event queue looks too "global" to me. If my network falls apart into two subnets with no connections between them and I only ask questions about the state changes of one subnet, the other subnet should not do any computations at all. I could use two event queues in that case. However, as soon as I connect the two subnets I would have to put all events into a single queue. I don't like the idea, that I need to know the topology of the network in order to set up my queue(s).
So
This queue is stored in order, based on the time the event should occur, so the smallest element will always be the next event to be modeled. As an event occurs, it can spawn other events. These subsequent events are placed into the queue as well.
Various priority queue implementations have been studied in the context of discrete event simulation; alternatives studied have included splay trees, skip lists, calendar queues, and ladder queues.
Monte Carlo simulation is appropriate for static systems that do not involve the passage of time. Discrete-event simulation is appropriate for dynamic systems where the passage of time plays a significant role.
In a discrete-event simulation, an Entity Queue block stores entities for a length of time that cannot be determined in advance. The queue attempts to output entities when possible, but its output depends on whether the downstream block accepts new entities.
To answer the first point, no I'm not aware of any discrete-event simulation (DES) algorithms that do not need a global event queue. It is possible to have a hierarchy of event queues, in which each event queue is represented in its parent event queue as an event (corresponding to the time of its next event). If a new event is added to an event queue such that it becomes the queue's next event, then the event queue needs to be rescheduled in its parent to preserve the order of event execution. However, you will ultimately still boil down to a single, global event queue that is the parent of all of the others in hierarchy, and which dispatches each event.
Alternatively, you could dispense with DES and perform something more akin to a programmable logic controller (PLC) which reevaluates the state of the entire network every small increment of time. However, typically, that would be a lot slower (it may not even run as fast as real-time), because most of the time it would have nothing to do. If you pick too big a time increment, the simulation may lose accuracy.
The simplest answer to the second point is that, ultimately, to the best of my knowledge, it is impossible to do without a global event queue. Each simulation event needs to execute at the correct time, and - since time cannot run backwards - the order in which events are dispatched matters. The current simulation time is defined by the time that the current event executes. If you have separate event queues, you also have separate clocks, which would make things very confusing, to say the least.
In your case, if your subnetworks are completely independent, you could simulate each subnetwork individually. However, if the state of one subnetwork affects the state of the total network, and the state of the total network affects the state of each subnetwork, then - since an event is influenced by the events that preceded it, can only influence the events that follow, but cannot influence what preceded it - you have to simulate the whole network with a global event queue.
If it's any consolation, a true DES simulation does not perform any processing in between events (other that determining what the next event is), so there should be no wasted processing in one subnetwork if all the action is taking place in another.
Finally, functional reactive programming (FRP) is absolutely useful in the context of a DES. Indeed, I now write of lot of my DES simulations in Scala using this approach.
I hope this helps!
UPDATE: Since writing the above, I've used Sodium (an excellent FRP library, which was referenced by the OP in the comments below), and can add some further explanation: Sodium provides a means for subscribing to events, and for performing actions when those events occur. However, here I'm using the term event in a general sense, such as a button being clicked by a user in a GUI, or a network package arriving, etc. In other words, the events are not necessarily simulation events.
You can still use Sodium—or any other FRP library—as part of a simulation, to subscribe to simulation events and perform actions when they occur; however, these tools typically have no built-in support for simulation, and so you must incorporate a simulation engine as the source of simulation events, in the same way that a GUI is incorporated as the source of user interaction events. It is within this engine that the global event queue must reside.
Incidentally, if you are trying to perform parallel or distributed simulation model execution, things get considerably more complicated. You have multiple event queues in these situations, but they must be synchronized (giving the appearance of a single queue). The two basic approaches are conservative synchronization and optimistic synchronization.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With