I've managed to get xUnit working on my little sample assembly. Now I want to see if I can grok FsCheck too. My problem is that I'm stumped when it comes to defining test properties for my functions.
Maybe I've just not got a good sample set of functions, but what would be good test properties for these functions, for example?
//transforms [1;2;3;4] into [(1,2);(3,4)]
pairs : 'a list -> ('a * 'a) list //'
//splits list into list of lists when predicate returns
// true for adjacent elements
splitOn : ('a -> 'a -> bool) -> 'a list -> 'a list list
//returns true if snd is bigger
sndBigger : ('a * 'a) -> bool (requires comparison)
There are already plenty of specific answers, so I'll try to give some general answers which might give you some ideas.
As a general piece of advice, try not to make too big a deal out of it. For sndBigger, a good property would be:
let ``should return true if and only if snd is bigger`` (a:int) (b:int) = sndBigger (a,b) = b > a
And that is probably exactly the implementation. Don't worry about it - sometimes a simple, old fashioned unit test is just what you need. No guilt necessary! :)
Maybe this link (by the Pex team) also gives some ideas.
I'll start with sndBigger
- it is a very simple function, but you can write some properties that should hold about it. For example, what happens when you reverse the values in the tuple:
// Reversing values of the tuple negates the result
let swap (a, b) = (b, a)
let prop_sndBiggerSwap x =
sndBigger x = not (sndBigger (swap x))
// If two elements of the tuple are same, it should give 'false'
let prop_sndBiggerEq a =
sndBigger (a, a) = false
EDIT: This rule prop_sndBiggerSwap
doesn't always hold (see comment by kvb). However the following should be correct:
// Reversing values of the tuple negates the result
let prop_sndBiggerSwap a b =
if a <> b then
let x = (a, b)
sndBigger x = not (sndBigger (swap x))
Regarding the pairs
function, kvb already posted some good ideas. In addition, you could check that turning the transformed list back into a list of elements returns the original list (you'll need to handle the case when the input list is odd - depending on what the pairs
function should do in this case):
let prop_pairsEq (x:_ list) =
if (x.Length%2 = 0) then
x |> pairs |> List.collect (fun (a, b) -> [a; b]) = x
else true
For splitOn
, we can test similar thing - if you concatenate all the returned lists, it should give the original list (this doesn't verify the splitting behavior, but it is a good thing to start with - it at least guarantees that no elements will be lost).
let prop_splitOnEq f x =
x |> splitOn f |> List.concat = x
I'm not sure if FsCheck can handle this though (!) because the property takes a function as an argument (so it would need to generate "random functions"). If this doesn't work, you'll need to provide a couple of more specific properties with some handwritten function f
. Next, implementing the check that f
returns true for all adjacent pairs in the splitted lists (as kvb suggests) isn't actually that difficult:
let prop_splitOnAdjacentTrue f x =
x |> splitOn f
|> List.forall (fun l ->
l |> Seq.pairwise
|> Seq.forall (fun (a, b) -> f a b))
Probably the only last thing that you could check is that f
returns false
when you give it the last element from one list and the first element from the next list. The following isn't fully complete, but it shows the way to go:
let prop_splitOnOtherFalse f x =
x |> splitOn f
|> Seq.pairwise
|> Seq.forall (fun (a, b) -> lastElement a = firstElement b)
The last sample also shows that you should check whether the splitOn
function can return an empty list as part of the returned list of results (because in that case, you couldn't find first/last element).
For some code (e.g. sndBigger
), the implementation is so simple that any property will be at least as complex as the original code, so testing via FsCheck may not make sense. However, for the other two functions here are some things that you could check:
pairs
List.map fst (pairs x) = evenEntries x
and List.map snd (pairs x) = oddEntries x
for simple functions evenEntries
and oddEntries
which you can write.splitOn
splitOn f l
, no two consecutive entries satisfy f" and "Taking lists (l1,l2)
from splitOn f l
pairwise, f (last l1) (first l2)
holds". Unfortunately, the logic here will probably be comparable in complexity to the implementation itself.If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With