I want to plot two different data sets in a scatterplot matrix.
I know that I can use upper.panel
and lower.panel
to differentiate the plot function. However, I don’t succeed in putting my data in a suitable format to harness this.
Assume I have two tissues (“brain” and “heart”) and four conditions (1–4). Now I can use e.g. pairs(data$heart)
to get a scatterplot matrix for one of the data sets. Assume I have the following data:
conditions <- 1 : 4
noise <- rnorm(100)
data <- list(brain = sapply(conditions, function (x) noise + 0.1 * rnorm(100)),
heart = sapply(conditions, function (x) noise + 0.3 * rnorm(100)))
How do I get this into a format so that pairs(data, …)
plots one data set above and one below the diagonal, as shown here (green = brain, violet = heart):
Just using
pairs(data, upper.panel = something, lower.panel = somethingElse)
Doesn’t work because that will plot all conditions versus all conditions without regard for different tissue – it essentially ignores the list, and the same when reordering the hierarchy (i.e. having data = (A=list(brain=…, heart=…), B=list(brain=…, heart=…), …)
).
This is the best I seem to be able to do via passing arguments:
foo.upper <- function(x,y,ind.upper,col.upper,ind.lower,col.lower,...){
points(x[ind.upper],y[ind.upper],col = col.upper,...)
}
foo.lower <- function(x,y,ind.lower,col.lower,ind.upper,col.upper,...){
points(x[ind.lower],y[ind.lower],col = col.lower,...)
}
pairs(dat[,-5],
lower.panel = foo.lower,
upper.panel = foo.upper,
ind.upper = dat$type == 'brain',
ind.lower = dat$type == 'heart',
col.upper = 'blue',
col.lower = 'red')
Note that each panel needs all arguments. ...
is a cruel mistress. If you include only the panel specific arguments in each function, it appears to work, but you get lots and lots of warnings from R trying to pass these arguments on to regular plotting functions and obviously they won't exist.
This was my quick first attempt, but it seems ugly:
dat <- as.data.frame(do.call(rbind,data))
dat$type <- rep(c('brain','heart'),each = 100)
foo.upper <- function(x,y,...){
points(x[dat$type == 'brain'],y[dat$type == 'brain'],col = 'red',...)
}
foo.lower <- function(x,y,...){
points(x[dat$type == 'heart'],y[dat$type == 'heart'],col = 'blue',...)
}
pairs(dat[,-5],lower.panel = foo.lower,upper.panel = foo.upper)
I'm abusing R's scoping here in this second version a somewhat ugly way. (Of course, you could probably do this more cleanly in lattice, but you probably knew that.)
The only other option I can think of is to design your own scatter plot matrix using layout
, but that's probably quite a bit of work.
Lattice Edit
Here's at least a start on a lattice solution. It should handle varying x,y axis ranges better, but I haven't tested that.
dat <- do.call(rbind,data)
dat <- as.data.frame(dat)
dat$grp <- rep(letters[1:2],each = 100)
plower <- function(x,y,grp,...){
panel.xyplot(x[grp == 'a'],y[grp == 'a'],col = 'red',...)
}
pupper <- function(x,y,grp,...){
panel.xyplot(x[grp == 'b'],y[grp == 'b'],...)
}
splom(~dat[,1:4],
data = dat,
lower.panel = plower,
upper.panel = pupper,
grp = dat$grp)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With