I am trying to apply different functions to different rows based on the value of a string in an adjacent column. My dataframe looks like this:
type size
A 1
B 3
A 4
C 2
C 5
A 4
B 32
C 3
and I want to apply different functions to types A, B, and C, to give a third column column "size2." For example, let's say the following functions apply to A, B, and C:
for A: size2 = 3*size
for B: size2 = size
for C: size2 = 2*size
I'm able to do this for each type separately using this code
df$size2 <- ifelse(df$type == "A", 3*df$size, NA)
df$size2 <- ifelse(df$type == "B", 1*df$size, NA)
df$size2 <- ifelse(df$type == "C", 2*df$size, NA)
However, I can't seem to do it for all of the types without erasing all of the other values. I tried to use this code to limit the application of the function to only those values that were NA (i.e., keep existing values and only fill in NA values), but it didn't work using this code:
df$size2 <- ifelse(is.na(df$size2), ifelse(df$type == "C", 2*df$size, NA), NA)
Does anyone have any ideas? Is it possible to use some kind of AND statement with "is.na(df$size2)" and "ifelse(df$type == "C""?
Many thanks!
Applying a function to each columnSetting MARGIN = 2 will apply the function you specify to each column of the array you are working with. In this case, the output is a vector containing the sum of each column of the sample data frame. You can also use the apply function to specific columns if you subset the data.
By using bracket notation on R DataFrame (data.name) we can select rows by column value, by index, by name, by condition e.t.c. You can also use the R base function subset() to get the same results. Besides these, R also provides another function dplyr::filter() to get the rows from the DataFrame.
Simply do the following: Select the cell with the formula and the adjacent cells you want to fill. Click Home > Fill, and choose either Down, Right, Up, or Left. Keyboard shortcut: You can also press Ctrl+D to fill the formula down in a column, or Ctrl+R to fill the formula to the right in a row.
To select a specific column, you can also type in the name of the dataframe, followed by a $ , and then the name of the column you are looking to select. In this example, we will be selecting the payment column of the dataframe. When running this script, R will simplify the result as a vector.
This might be a might more R-ish (and I called my dataframe 'dat' instead of 'df' since df
is a commonly used function.
> facs <- c(3,1,2)
> dat$size2= dat$size* facs[ match( dat$type, c("A","B","C") ) ]
> dat
type size size2
1 A 1 3
2 B 3 3
3 A 4 12
4 C 2 4
5 C 5 10
6 A 4 12
7 B 32 32
8 C 3 6
The match
function is used to construct indexes to supply to the extract function [
.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With