Row dendrograms show the distance (or similarity) between rows and which nodes each row belongs to as a result of the clustering calculation. Column dendrograms show the distance (or similarity) between the variables (the selected cell value columns).
A heatmap is a graphical representation of data where the values are represented with colors. The heatmap. 2 function from the gplots package allows to produce highly customizable heatmaps.
Cluster heatmaps are commonly used in biology and related fields to reveal hierarchical clusters in data matrices. Heatmaps visualize a data matrix by drawing a rectangular grid corresponding to rows and columns in the matrix, and coloring the cells by their values in the data matrix.
A heatmap is a graphical representation of data where the individual values contained in a matrix are represented as colors. This page displays many examples built with R, both static and interactive. The heatmap() function is natively provided in R.
The main differences between heatmap.2
and heatplot
functions are the following:
heatmap.2, as default uses euclidean measure to obtain distance matrix and complete agglomeration method for clustering, while heatplot uses correlation, and average agglomeration method, respectively.
heatmap.2 computes the distance matrix and runs clustering algorithm before scaling, whereas heatplot (when dualScale=TRUE
) clusters already scaled data.
heatmap.2 reorders the dendrogram based on the row and column mean values, as described here.
Default settings (p. 1) can be simply changed within heatmap.2, by supplying custom distfun
and hclustfun
arguments. However p. 2 and 3 cannot be easily addressed, without changing the source code. Therefore heatplot
function acts as a wrapper for heatmap.2. First, it applies necessary transformation to the data, calculates distance matrix, clusters the data, and then uses heatmap.2 functionality only to plot the heatmap with the above parameters.
The dualScale=TRUE
argument in the heatplot function, applies only row-based centering and scaling (description). Then, it reassigns the extremes (description) of the scaled data to the zlim
values:
z <- t(scale(t(data)))
zlim <- c(-3,3)
z <- pmin(pmax(z, zlim[1]), zlim[2])
In order to match the output from the heatplot function, I would like to propose two solutions:
I - add new functionality to the source code -> heatmap.3
The code can be found here. Feel free to browse through revisions to see the changes made to heatmap.2 function. In summary, I introduced the following options:
scale=c("row","column")
zlim=c(-3,3)
reorder=FALSE
An example:
# require(gtools)
# require(RColorBrewer)
cols <- colorRampPalette(brewer.pal(10, "RdBu"))(256)
distCor <- function(x) as.dist(1-cor(t(x)))
hclustAvg <- function(x) hclust(x, method="average")
heatmap.3(data, trace="none", scale="row", zlim=c(-3,3), reorder=FALSE,
distfun=distCor, hclustfun=hclustAvg, col=rev(cols), symbreak=FALSE)
II - define a function that provides all the required arguments to the heatmap.2
If you prefer to use the original heatmap.2, the zClust
function (below) reproduces all the steps performed by heatplot. It provides (in a list format) the scaled data matrix, row and column dendrograms. These can be used as an input to the heatmap.2 function:
# depending on the analysis, the data can be centered and scaled by row or column.
# default parameters correspond to the ones in the heatplot function.
distCor <- function(x) as.dist(1-cor(x))
zClust <- function(x, scale="row", zlim=c(-3,3), method="average") {
if (scale=="row") z <- t(scale(t(x)))
if (scale=="col") z <- scale(x)
z <- pmin(pmax(z, zlim[1]), zlim[2])
hcl_row <- hclust(distCor(t(z)), method=method)
hcl_col <- hclust(distCor(z), method=method)
return(list(data=z, Rowv=as.dendrogram(hcl_row), Colv=as.dendrogram(hcl_col)))
}
z <- zClust(data)
# require(RColorBrewer)
cols <- colorRampPalette(brewer.pal(10, "RdBu"))(256)
heatmap.2(z$data, trace='none', col=rev(cols), Rowv=z$Rowv, Colv=z$Colv)
Few additional comments regarding heatmap.2(3)
functionality:
symbreak=TRUE
is recommended when scaling is applied. It will adjust the colour scale, so it breaks around 0. In the current example, the negative values = blue, while the positive values = red.col=bluered(256)
may provide an alternative colouring solution, and it doesn't require RColorBrewer library.If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With