Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Difference bloom filters and FM-sketches

What is the difference between bloom filters and hash sketches (also FM-sketches) and what is their use?

like image 940
navige Avatar asked Nov 08 '12 11:11

navige


2 Answers

Hash sketches/Flajolet-Martin Sketches

Flajolet, P./Martin, G. (1985): Probabilistic counting algorithms for data base applications, in: Journal of Computer and System Sciences, Vol. 31, No. 2 (September 1985), pp. 182-209.

Durand, M./Flajolet, P. (2003): Loglog Counting of Large Cardinalities, in: Springer LNCS 2832, Algorithms ESA 2003, pp. 605–617.

Hash sketches are used to count the number of distinct elements in a set.

given:

  • a bit array B[] of length l
  • a (single) hash function h() that maps to [0,1,...2^l)
  • a function r() that gives the position of the least-significant 1-bit in the binary representation of its input (e.g. 000101 returns 1, 001000 returns 4)

insertion of element x:

  • pn := h(x) returns a pseudo-random number
  • apply r(pn) to get the position of the bit array to set to 1 since output of h() is pseudo-random every bit i is set to 1 ~n/(2^(i+1)) times

number of distinct elements in the set:

  • find the position p of the right-most 0 in the bit array
  • p = log2(n), solve for n to get the number of distinct element in the set; the result might be up to 1.83 magnitudes off

usage:

  • in Data Mining, P2P/distributed applications, estimation of the document frequency, etc.

Bloom filters

Bloom, H. (1970): Space/time trade-offs in hash coding with allowable errors, in: Communications of the ACM, Vol. 13, No. 7 (July 1970), pp. 422-426.

Bloom filters are used to test whether an element is a member of a set.

given:

  • a bit array B[] of length m
  • k different hash functions h_k() that map to [0,...,m-1], i.e. to one of the position of the m-bit array

insertion of element x:

  • apply h_k to x (h_k(x)), for all k, i.e. you get k values
  • set the resulting bits in the array B to 1 (if already set to 1, don't change anything)

check if y is already in the set:

  • get the positions p_k to check using all the hash functions h_k (h_k(y)), i.e. for each function h_k you get a position p_k
  • if one of the positions p_k is set to 0 in the array B, the element y is definitively not in the set
  • if all positions given by p_k are 1, the element y might (!) be in the set
  • false positive rate is approximately (1 - e^(-kn/m))^k, no false negatives are possible!
  • by increasing the number of hashing functions, the false positive rate can be decreased; however, at the same time your bloom filter gets slower; the optimal value of k is k = (m/n)ln(2)

usage:

  • in the beginning used as a cheap filter in databases to filter out elements that do not match a query
  • various applications today, e.g. in Google BigTable, but also in networking for IP lookups, etc.
like image 61
navige Avatar answered Sep 21 '22 13:09

navige


The Bloom Filter is a data structure used for Membership lookup while FM Sketch is primarily used for counting of elements. These two data structures provide the respective solutions optimizing over the space required to perform the lookup/computation and the trade off is the accuracy of the result.

like image 23
quirkystack Avatar answered Sep 23 '22 13:09

quirkystack