I've a sample tiny CNN implemented in both Keras and PyTorch. When I print summary of both the networks, the total number of trainable parameters are same but total number of parameters and number of parameters for Batch Normalization don't match.
Here is the CNN implementation in Keras:
inputs = Input(shape = (64, 64, 1)). # Channel Last: (NHWC)
model = Conv2D(filters=32, kernel_size=(3, 3), padding='SAME', activation='relu', input_shape=(IMG_SIZE, IMG_SIZE, 1))(inputs)
model = BatchNormalization(momentum=0.15, axis=-1)(model)
model = Flatten()(model)
dense = Dense(100, activation = "relu")(model)
head_root = Dense(10, activation = 'softmax')(dense)
And the summary printed for above model is:
Model: "model_8"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_9 (InputLayer) (None, 64, 64, 1) 0
_________________________________________________________________
conv2d_10 (Conv2D) (None, 64, 64, 32) 320
_________________________________________________________________
batch_normalization_2 (Batch (None, 64, 64, 32) 128
_________________________________________________________________
flatten_3 (Flatten) (None, 131072) 0
_________________________________________________________________
dense_11 (Dense) (None, 100) 13107300
_________________________________________________________________
dense_12 (Dense) (None, 10) 1010
=================================================================
Total params: 13,108,758
Trainable params: 13,108,694
Non-trainable params: 64
_________________________________________________________________
Here's the implementation of the same model architecture in PyTorch:
# Image format: Channel first (NCHW) in PyTorch
class CustomModel(nn.Module):
def __init__(self):
super(CustomModel, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=32, kernel_size=(3, 3), padding=1),
nn.ReLU(True),
nn.BatchNorm2d(num_features=32),
)
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(in_features=131072, out_features=100)
self.fc2 = nn.Linear(in_features=100, out_features=10)
def forward(self, x):
output = self.layer1(x)
output = self.flatten(output)
output = self.fc1(output)
output = self.fc2(output)
return output
And following is the output of summary of the above model:
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 32, 64, 64] 320
ReLU-2 [-1, 32, 64, 64] 0
BatchNorm2d-3 [-1, 32, 64, 64] 64
Flatten-4 [-1, 131072] 0
Linear-5 [-1, 100] 13,107,300
Linear-6 [-1, 10] 1,010
================================================================
Total params: 13,108,694
Trainable params: 13,108,694
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.02
Forward/backward pass size (MB): 4.00
Params size (MB): 50.01
Estimated Total Size (MB): 54.02
----------------------------------------------------------------
As you can see in above results, Batch Normalization in Keras has more number of parameters than PyTorch (2x to be exact). So what's the difference in above CNN architectures? If they are equivalent, then what am I missing here?
BatchNorm2d is the number of dimensions/channels that output from the last layer and come in to the batch norm layer.
Pytorch batch normalization is a process of training the neural network. During training the network this layer keep guessing its computed mean and variance. Code: In the following code, we will import some libraries from which we can train the neural network and also evaluate its computed mean and variance.
Applies Batch Normalization over a 2D or 3D input as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .
For instance, after a Conv2D layer with data_format="channels_first" , set axis=1 in BatchNormalization . momentum: Momentum for the moving average. epsilon: Small float added to variance to avoid dividing by zero. center: If True, add offset of beta to normalized tensor.
As you can see in above results, Batch Normalization in Keras has more number of parameters than PyTorch (2x to be exact). So what's the difference in above CNN architectures? If they are equivalent, then what am I missing here? Keras treats as parameters (weights) many things that will be "saved/loaded" in the layer.
However, the Keras library can still operate separately and independently. What is PyTorch? PyTorch is a relatively new deep learning framework based on Torch. Developed by Facebook’s AI research group and open-sourced on GitHub in 2017, it’s used for natural language processing applications.
Keras was adopted and integrated into TensorFlow in mid-2017. Users can access it via the tf.keras module. However, the Keras library can still operate separately and independently. What is PyTorch? PyTorch is a relatively new deep learning framework based on Torch.
I want to use BatchNorm1D like in PyTorch in TensorFlow. I notice that BatchNormalization () in TF has axis=-1 as default. Which axis is the correct one for BatchNorm1D, BatchNorm2D, BatchNorm3D as in PyTorch?
Keras treats as parameters (weights) many things that will be "saved/loaded" in the layer.
While both implementations naturally have the accumulated "mean" and "variance" of the batches, these values are not trainable with backpropagation.
Nevertheless, these values are updated every batch, and Keras treats them as non-trainable weights, while PyTorch simply hides them. The term "non-trainable" here means "not trainable by backpropagation", but doesn't mean the values are frozen.
In total they are 4 groups of "weights" for a BatchNormalization
layer. Considering the selected axis (default = -1, size=32 for your layer)
scale
(32) - trainableoffset
(32) - trainable accumulated means
(32) - non-trainable, but updated every batchaccumulated std
(32) - non-trainable, but updated every batchThe advantage of having it like this in Keras is that when you save the layer, you also save the mean and variance values the same way you save all other weights in the layer automatically. And when you load the layer, these weights are loaded together.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With