I have a time-series dataset with two lables (0
and 1
). I am using Dynamic Time Warping (DTW) as a similarity measure for classification using k-nearest neighbour (kNN) as described in these two wonderful blog posts:
http://alexminnaar.com/2014/04/16/Time-Series-Classification-and-Clustering-with-Python.html
Arguments
---------
n_neighbors : int, optional (default = 5)
Number of neighbors to use by default for KNN
max_warping_window : int, optional (default = infinity)
Maximum warping window allowed by the DTW dynamic
programming function
subsample_step : int, optional (default = 1)
Step size for the timeseries array. By setting subsample_step = 2,
the timeseries length will be reduced by 50% because every second
item is skipped. Implemented by x[:, ::subsample_step]
"""
def __init__(self, n_neighbors=5, max_warping_window=10000, subsample_step=1):
self.n_neighbors = n_neighbors
self.max_warping_window = max_warping_window
self.subsample_step = subsample_step
def fit(self, x, l):
"""Fit the model using x as training data and l as class labels
Arguments
---------
x : array of shape [n_samples, n_timepoints]
Training data set for input into KNN classifer
l : array of shape [n_samples]
Training labels for input into KNN classifier
"""
self.x = x
self.l = l
def _dtw_distance(self, ts_a, ts_b, d = lambda x,y: abs(x-y)):
"""Returns the DTW similarity distance between two 2-D
timeseries numpy arrays.
Arguments
---------
ts_a, ts_b : array of shape [n_samples, n_timepoints]
Two arrays containing n_samples of timeseries data
whose DTW distance between each sample of A and B
will be compared
d : DistanceMetric object (default = abs(x-y))
the distance measure used for A_i - B_j in the
DTW dynamic programming function
Returns
-------
DTW distance between A and B
"""
# Create cost matrix via broadcasting with large int
ts_a, ts_b = np.array(ts_a), np.array(ts_b)
M, N = len(ts_a), len(ts_b)
cost = sys.maxint * np.ones((M, N))
# Initialize the first row and column
cost[0, 0] = d(ts_a[0], ts_b[0])
for i in xrange(1, M):
cost[i, 0] = cost[i-1, 0] + d(ts_a[i], ts_b[0])
for j in xrange(1, N):
cost[0, j] = cost[0, j-1] + d(ts_a[0], ts_b[j])
# Populate rest of cost matrix within window
for i in xrange(1, M):
for j in xrange(max(1, i - self.max_warping_window),
min(N, i + self.max_warping_window)):
choices = cost[i - 1, j - 1], cost[i, j-1], cost[i-1, j]
cost[i, j] = min(choices) + d(ts_a[i], ts_b[j])
# Return DTW distance given window
return cost[-1, -1]
def _dist_matrix(self, x, y):
"""Computes the M x N distance matrix between the training
dataset and testing dataset (y) using the DTW distance measure
Arguments
---------
x : array of shape [n_samples, n_timepoints]
y : array of shape [n_samples, n_timepoints]
Returns
-------
Distance matrix between each item of x and y with
shape [training_n_samples, testing_n_samples]
"""
# Compute the distance matrix
dm_count = 0
# Compute condensed distance matrix (upper triangle) of pairwise dtw distances
# when x and y are the same array
if(np.array_equal(x, y)):
x_s = np.shape(x)
dm = np.zeros((x_s[0] * (x_s[0] - 1)) // 2, dtype=np.double)
p = ProgressBar(shape(dm)[0])
for i in xrange(0, x_s[0] - 1):
for j in xrange(i + 1, x_s[0]):
dm[dm_count] = self._dtw_distance(x[i, ::self.subsample_step],
y[j, ::self.subsample_step])
dm_count += 1
p.animate(dm_count)
# Convert to squareform
dm = squareform(dm)
return dm
# Compute full distance matrix of dtw distnces between x and y
else:
x_s = np.shape(x)
y_s = np.shape(y)
dm = np.zeros((x_s[0], y_s[0]))
dm_size = x_s[0]*y_s[0]
p = ProgressBar(dm_size)
for i in xrange(0, x_s[0]):
for j in xrange(0, y_s[0]):
dm[i, j] = self._dtw_distance(x[i, ::self.subsample_step],
y[j, ::self.subsample_step])
# Update progress bar
dm_count += 1
p.animate(dm_count)
return dm
def predict(self, x):
"""Predict the class labels or probability estimates for
the provided data
Arguments
---------
x : array of shape [n_samples, n_timepoints]
Array containing the testing data set to be classified
Returns
-------
2 arrays representing:
(1) the predicted class labels
(2) the knn label count probability
"""
dm = self._dist_matrix(x, self.x)
# Identify the k nearest neighbors
knn_idx = dm.argsort()[:, :self.n_neighbors]
# Identify k nearest labels
knn_labels = self.l[knn_idx]
# Model Label
mode_data = mode(knn_labels, axis=1)
mode_label = mode_data[0]
mode_proba = mode_data[1]/self.n_neighbors
return mode_label.ravel(), mode_proba.ravel()
However, for classification with kNN the two posts use their own kNN algorithms.
I want to use sklearn's options such as gridsearchcv
in my classification. Therefore, I would like to know how I can use Dynamic Time Warping (DTW) with sklearn kNN.
Note: I am not limited to sklearn
and happy to receive answers in other libraries as well
I am happy to provide more details if needed.
Dynamic Time Warping is used to compare the similarity or calculate the distance between two arrays or time series with different length.
In time series analysis, dynamic time warping (DTW) is an algorithm for measuring similarity between two temporal sequences, which may vary in speed.
The key to improve the algorithm is to add a preprocessing stage to make the final algorithm run with more efficient data and then improve the effect of classification. The experimental results show that the improved KNN algorithm improves the accuracy and efficiency of classification.
You can use a custom metric for KNN. Therefore you only need to implement DTW yourself (or use/adapt any existing DTW implementation in python) [gist of this code].
import numpy as np
from scipy.spatial import distance
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report
#toy dataset
X = np.random.random((100,10))
y = np.random.randint(0,2, (100))
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
#custom metric
def DTW(a, b):
an = a.size
bn = b.size
pointwise_distance = distance.cdist(a.reshape(-1,1),b.reshape(-1,1))
cumdist = np.matrix(np.ones((an+1,bn+1)) * np.inf)
cumdist[0,0] = 0
for ai in range(an):
for bi in range(bn):
minimum_cost = np.min([cumdist[ai, bi+1],
cumdist[ai+1, bi],
cumdist[ai, bi]])
cumdist[ai+1, bi+1] = pointwise_distance[ai,bi] + minimum_cost
return cumdist[an, bn]
#train
parameters = {'n_neighbors':[2, 4, 8]}
clf = GridSearchCV(KNeighborsClassifier(metric=DTW), parameters, cv=3, verbose=1)
clf.fit(X_train, y_train)
#evaluate
y_pred = clf.predict(X_test)
print(classification_report(y_test, y_pred))
Which yields
Fitting 3 folds for each of 3 candidates, totalling 9 fits
[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 29.0s finished
precision recall f1-score support
0 0.57 0.89 0.70 18
1 0.60 0.20 0.30 15
avg / total 0.58 0.58 0.52 33
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With